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SI Methods
Vα14-Vβ8.2 TCR Refolding. Because initial refolding of the Vα14/
Vβ8.2 TCR resulted in increased αα-homodimerization, we de-
signed a construct in which the Vα14 (TRAV11*02, TRAJ18*01;
CDR3α: CVVGDRGSALGRLHF) and Vβ8.2 chains (TRBV13-
2*01, TRBJ2-5*01, TRBD2*01; CDR3β: CASGEGGLGGPT-
QYF) were cloned upstream of the human TCR α and β constant
domains, respectively. To avoid introducing an additional re-
striction site between variable and constant domains, we used an
internal BglII site within the constant domain of the β chain (in
pET30a), and the variable α chain was fused to aBamHI site within
the human constant domain (in pET22b+) that was created as a
silent mutation through site-directed mutagenesis (5′-CCT GAC
CCT-3′ changed to 5′-CCG GAT CCT-3′). In addition, two cys-
teines were incorporated in the constant domain (TRAC 48 and
TRBC 57) to form a disulfide bond, and a free cysteine in the
constant TCRβ chain was mutated to serine, to facilitate refolding
(1). Both α and β chains were expressed separately in BL21 (DE3)
cells, and inclusion bodies were purified using standard methods.
Inclusion bodies were dissolved in 50mMTris-HCl, 5 mMEDTA,
2mMDTT, and 6M guanidine-HCl, pH 7.0, and stored at−80 °C.
The TCR was refolded essentially as reported for the human
Vα24Vβ11 TCR (2, 3) with the followingmodifications: 32mg of α
chain and 48 mg of β chain were thawed, mixed, and pulsed with 1
mMDTTand then addeddrop-wise to 1L refolding buffer (50mM
Tris-HCl, 0.4M L-arginine, 5Murea, 2mMEDTA, 5mMreduced
glutathione, 0.5 mM oxidized glutathione, and 0.2 mM PMSF,
pH8.0, at RT) under constant stirring at 4 °C. After 16 h, the same
amount of α and β chains were added again, and stirring continued
for an additional 8 h.The refoldingmixwas thendialyzed overnight
against 18 L of 10mMTris-HCL, 0.1M urea, and pH 8.0, and then
again for 8 h against the same fresh buffer. Finally, the refolding
mix was dialyzed against 18 L of 10 mMTris-HCl, pH 8.0, for 24 h.
The refolded protein was purified as outlined in theMethods.

BirA-Tagged Vα14-Vβ8.2 TCR Gene Construction. We amplified a C-
terminal fragment of the human TCRβ constant domain with
two synthetic oligonucleotides to include a birA-tag: 5′-GCAGA-
GATCTCCCACACCC (an internal BglII site in the human TCRβ
constant domain, in italics) and 5′-GAATTCTTAACGATGATTC-
CACACCATTTTCTGTGCATCCAGAATATGATGCAGTGCTCT
ACCCCAGGCCTC (EcoRI site, italics; birA sequence in boldface
type). The resulting DNA fragment was digested with BglII and
EcoRI and ligated withBglII-EcoRI-digested pET30a containing the
mouse Vβ8.2-human Cβ chimeric TCR.

Surface Plasmon Resonance Studies. Recombinant mCD1d protein
containing a birA-tag (LHHILDAQKMVWNHR) between the
CD1d ectodomain and C-terminal hexahistidine tag was expressed
and purified as described previously (4). Before lipid loading, birA-
taggedmCD1d was biotinylated using a commercial biotinylation kit
(Avidity) and purified from free biotin by SEC on Superdex S200 10/
300 GL. Glycolipids (dissolved in 0.5% Tween 20) were loaded
overnight, and ≈1,000 RU of mCD1d was immobilized on a strep-
tavidin sensor chip (Biacore). The TCR protein was diluted in run-
ning buffer without Tween 20 (10 mM Hepes, 150 mM NaCl, and
3mMEDTA,pH7.4) to prevent or slowdownwashing the glycolipid

off mCD1d. A series of increasing concentrations of the TCR in
duplicatewerepassedover themCD1dglycolipidcomplex (0.01–0.64
μM for α-GalCer and 0.04–2.5 μM for GalA-GSL. The TCR was
injected for a 3-min association for α-GalCer or 5-min association for
GalA-GSL, anddissociationwas continuedover 30min forα-GalCer
or 5 min for GalA-GSL). Alternatively, the biotinylated TCR was
immobilized up to 1,000 RU, and serial dilutions (0.14–36 μM) of
mCD1d-BbGL-2c complexes were injected for a 2-min association
and 2-min dissociation. Experiments were carried out at 25 °C with a
flowrateof 30μL/minandperformed in total twoor three times, each
time with a different TCR preparation. Kinetic parameters were
calculated after subtracting the response to mCD1d molecules that
were incubated only with Tween 20, using a simple Langmuir 1:1
model in the BIA evaluation software version 4.1.

Data Collection and Crystal Structure Determination. Crystals were
flash-cooled at 100 K in mother liquor containing 20% glycerol.
Diffraction data from a single crystals were collected at the
Stanford Synchrotron Radiation Laboratory (SSRL) beamlines
7.1 (mCD1d-BbGL-2c) and 9.2 (mCD1d-BbGL-2f) and were
processed to 2.05 Å and 1.85 Å resolution, respectively with the
Denzo-Scalepack suite (5). mCD1d-BbGL-2c crystallized in
monoclinic spacegroup P21 (unit cell dimensions: a= 41.7 Å; b=
97.8 Å; c = 55.4 Å; β=107.0), and mCD1d-BbGL-2f crystallized
in orthorombic spacegroup P212121 (unit cell dimensions: a =
42.1; b = 110.4; c = 107.5).
In both crystals, one mCD1d-glycolipid molecule occupies the

asymmetricunitwithanestimatedsolventcontentof45.4%andVm
of 2.28Å3/Da formCD1d-BbGL-2c) or 53.7% solvent content and
Vm of 2.6 Å3/Da for mCD1d-BbGL-2f. Molecular replacement
was carried out in CCP4 (6) using the programMOLREP (7), with
the protein coordinates from themCD1d-sulfatide structure [PDB
code 2AKR (4)] as the search model. For both crystal structures,
rigid-body refinement was carried out, followed by several rounds
of restrained refinement against the maximum likelihood target in
REFMAC 5.2. The refinement progress was judged bymonitoring
the Rfree for cross-validation (8). The model was rebuilt into σA-
weighted, 2Fo –Fc and Fo – Fc difference electron density maps
using the program COOT (9). Final refinement steps were per-
formed using the TLS procedure in REFMAC (10) with three
anisotropic domains (α1–α2 domain including carbohydrates and
glycolipid, α3-domain, and β2M). ThemCD1d-BbGL-2c structure
has a final Rcryst = 20.8%andRfree= 25.1%, whereas themCD1d-
BbGL-2f structure has a final Rcryst = 20.5% and Rfree = 23.3%.
The quality of both models (Table S1) was excellent, as assessed
with the program Molprobity (11).

TCR Modeling. The structures of mCD1d in complex with either
BbGL-2c or BbGl-2f were each superimposed onto the mCD1d
portion of the recently determined crystal structure of the
mCD1d-α-GalCer-Vα14Vβ8.2 TCR complex [PDB code 3HE6
(12)]. Under the assumption that the TCR maintains a con-
served footprint onto CD1d, even when the Borrelia ligands are
bound, the current TCR model illustrates the binding ori-
entation of BbGL-2c and BbGL-2f within the CD1d-TCR
complex.
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Fig. S1. Structural differences between mouse and human CD1d. (A) Overlay of human (yellow) and mouse (light blue) CD1d-α-GalCer complexes [PDB codes
1Z5L (13) and 1ZT4 (14)] illustrates the influence of tryptophan153 (W153) in the presentation of the galactose epitope. (B) Superimposition of the human
CD1d-α-GalCer structure (yellow) with that of mouse CD1d with bound BbGL-2c (gray) and BbGL-2f (green). The influence of the mCD1dG155W mutant is
modeled, and indicates that the tryptophan side chain is too close to the galactose moieties and will affect the presentation of both BbGL-2c and BbGL-2f.

Fig. S2. TCR-glycolipid structures and models. (A) Crystal structure of the mCD1d-αGalCer-Vα14Vβ8.2 TCR complex [PDB code 3HE6 (12)] and derived models
of mCD1d-bound BbGL-2c (B) and BbGL-2f (C). Note that this model illustrates the steric clashes between the Borrelia glycolipid BbGL-2c with CDR3α of the TCR
in this docking orientation. H bonds are illustrated as blue dashed lanes only for only the actual crystal structure but not for the models. Glycolipids are
depicted with yellow sticks, mCD1d in gray, TCR α chain CDR1 region in orange, and CDR3 region in cyan. TCR residues that interact with α-GalCer in A are
shown as sticks.
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Table S1. Data collection and refinement statistics

mCD1d-BbGL-2c mCD1d-BbGL-2f

Data collection
Resolution range (Å)* 50.0–2.05 (2.12–2.05) 40.0–1.85 (1.92–1.85)
Completeness (%)* 93.3 (90.0) 91.2 (94.4)
Number of unique reflections 25,018 39,906
Redundancy 4.4 3.2
Rsym*

† (%) 6.7 (60.4) 6.1 (38.3)
I/σ* 35.9 (3.6) 21.6 (3.6)

Refinement statistics
Number of reflections (F > 0) 23,962 38,588
Maximum resolution (Å) 2.05 1.85
Rcryst

‡ (%) 20.8 (31.0) 20.5 (23.1)
Rfree

§ (%) 25.1 (32.0) 23.3 (23.9)
Number of atoms 3,151 3,272
Protein 2,911 2,942
Glycolipid 53 55
N-linked carbohydrate 56 42
Solvent molecules (waters/DMSO) 131/0 229/4

Ramachandran statistics (%)
Favored 98.6 98.6
Outliers 0.0 0.0

RMSD from ideal geometry
Bond length (Å) 0.016 0.013
Bond angles (°) 1.70 1.43

Average B values (Å2)||

Protein 52.5 25.6
Glycolipid 77.5 53.6
Water molecules 32.45 19.6
Carbohydrates 70.7 37.2

*Numbers in parentheses refer to highest-resolution shell.
†Rsym=(ΣhΣi|Ii(h)-<I(h)>I|(ΣhΣIIi(h))x100, where <I(h)> is the average intensity of i symmetry-related observations
for reflections with Bragg index h.
‡Rcryst=(Σhkl|Fo-Fc|/Σhkl|Fo|)x100, where Fo and Fc are the observed and calculated structure factors, respectively,
for all data.
§Rfree was calculated as for Rcryst, but on 2% (CD1d) and 1.5% (TCR) of data excluded before refinement.
||B values were calculated with the CCP4 program TLSANL (1).
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