Supporting Information

Lu et al. 10.1073/pnas.0911427107

Fig. S1. (A) Generation of a Salvador conditional allele. A targeting vector was designed to flank exon 3 of sav1 with loxP sites. Exon 3 contains the WW domain and is essential for interaction of sav1 with mst1 and mst2. Deletion of exon 3 results in premature termination and a predicted truncated non-Legend continued on following page

functional Sal1 protein. Targeting was confirmed by Southern and PCR analysis in ES cells and in tail DNA from mice. The neo cassette was removed in vivo by the action of Flpe. (*B*) Generation of a *mst1* conditional allele. A targeting vector was designed to flank exons 4 and 5 of *mst1* with loxP sites. Exons 4 and 5 contain the ATP-binding site of *mst1* and are essential for kinase activity. Deletion of exons 4 and 5 results in premature termination and a predicted truncated nonfunctional *Mst1* protein. Targeting was confirmed by Southern and PCR analysis in ES cells and in tail DNA from mice. The neo cassette was removed in vivo by the action of Flpe. (C) Generation of a *mst2* conditional allele. A targeting vector was designed to flank exons 5 and 6 of *mst2* with loxP sites. Exons 5 and 6 contain the ATP-binding site of *mst2* and are essential for kinase activity. Deletion of exons 4 and 5 results in premature termination and a predicted truncated nonfunctional *Mst1* protein. Targeting was confirmed by Southern and PCR analysis in ES cells and in tail DNA from mice. The neo cassette was removed in vivo by the action of Flpe. (C) Generation of a *mst2* conditional allele. A targeting vector was designed to flank exons 5 and 6 of *mst2* with loxP sites. Exons 5 and 6 contain the ATP-binding site of *mst2* and are essential for kinase activity. Deletion of exons 4 and 5 results in premature termination and a predicted truncated nonfunctional *Mst2* protein. Targeting was confirmed by Southern and PCR analysis in ES cells and in tail DNA from mice. The neo cassette was removed in vivo by the action of Flpe.

Fig. 52. Cell death is moderately increased in sav1 and mst1/2 mutant livers relative to wild-type controls. (A) Tunel staining of wild-type sections reveals few cells undergoing apoptosis. (B) Sav1 and (C) mst1/2 mutants show increased numbers of tunel-positive cells. (D) Quantitation of tunel staining. Mst1/2 mutants have ~8-fold higher numbers of tunel-positive cells. Sav1 mutants have also have increased tunel-positive hepatocytes, but the difference is not statistically significant.

2345 200 243 € WT vs. ST (2534) ⓒ ST vs. HCC (1132)	В	X r	not Y			C X and Y				D	D Y not X				
	SYMBOL	NL ST		HCC	ST/NL	SYMBOL	NL S	ST	HCC	HCC/ST	SYMBOL	NL S	T	HCC	HCC/ST
ST	Spink3	6.72925	12.459	13.9018	5.72975	Gpc3	6.622	9.2965	11.8131333	2.51663333	Fofbp1	6.376625	7,168	9,91793333	2,74993333
HCC	Cib3	6.792375	11.4942	11.4799333	4.701825	Sdcbp2	6.573	7.7652	10.2107333	2.44553333	SIc23a3	6.441125	6.7537	8.9716	2.2179
	H2-Aa	8.7205	12.74	13.474	4.0195	Gpc3	6.775	10.0478	12.384	2.3362	Nope	6.465375	6.9331	9.10926667	2.17616667
	Lcn2	9.61325	13.483	14.3233333	3.86975	Cd63	8.229	10.7311	12.8936	2.1625	Wisp2	6.367625	6.9477	9.0736	2.1259
	Sftpd	6.9725	10.681	11.9248667	3.7085	Chrnb1	6.808875	9.628	11.7401333	2.11213333	C030003H22R	6.635625	7.2403	9.0856	1.8453
	H2-Eb1	8.069625	11.718	12.5573333	3.648375	Rragd	6.75575	8.4944	10.6032667	2.10886667	SIc6a20b	6.293375	7.0576	8.8622	1.8046
X not Y	Igh-VJ558	9.028	12.6343	12.399	3.6063	LOC217328	6.453875	7.3845	9.47766667	2.09316667	Lpl	10.133875	11.837	13.632	1.795
(2345)	Spp1	10.514875	13.978	14.6573333	3.463125	Tubb2b	6.476375	8.8192	10.8628667	2.04366667	Gnai1	7.18675	8.1383	9.87793333	1.73963333
	Slpi	7.260375	10.673	12.0126667	3.412625	Cav1	8.343	10.09	11.9888667	1.89886667	Fgf21	7.897125	8.4093	10.0823333	1.67303333
	LOC10004762	9.697625	13.0446	12.3978	3.346975	Cd63	7.92225	9.7986	11.5974	1.7988	Csad	12.06625	11.712	13.3393333	1.62733333
	Igk-C	10.084	13.392	12.8268667	3.308	Cd63	7.069	8.7968	10.5380667	1.74126667	SIc24a3	6.86075	7.2107	8.82206667	1.61136667
the second s	Igh-VJ558	7.49	10.7202	10.3536667	3.2302	9130213B05R	6.66225	7.8248	9.54086667	1.71606667	Adam32	7.2095	8.0961	9.68446667	1.58836667
	S100a8	7.763375	10.8751	10.4960667	3.111725	Gipc2	6.362625	7.1196	8.82473333	1.70513333	Ctps	9.1535	9.7352	11.3146667	1.57946667
	Mgp	7.667	10.7748	11.0896667	3.1078	EG665509	6.47525	8.9503	10.6420667	1.69176667	Arhgap22	6.494875	6.9851	8.47006667	1.48496667
	102052244.00	7.827375	10.8817	10.1092	3.054325	Tnfrsf12a	8.09425	9.9527	11.6318667	1.67916667	Ctps	8.091	8.3381	9.7854	1.4473
	4930533K18K	7.3/2/5	10.4052	11.6/5266/	3.03245	D17H6S56E-5	6.53625	8.8319	10.5038	1.6719	Rab34	7.153625	8.0048	9.44553333	1.44073333
	BICC1	6.310123	0.2001	11 2428667	2.9566/5	Dab2	9.75075	10.783	12.4153333	1.63233333	Vil1	6.36025	6.6633	8.03346667	1.37016667
X and Y	Cuella	6.450025	9.3901	0.62522222	2.933475	S100a11	8.747625	12.338	13.9653333	1.62733333	AA407270	7.08575	7.6283	8.99673333	1.36843333
(259)	CXC14	7.002125	9.3099	9.03533333	2.92005	Ahnak	8.587125	10.247	11.8614	1.6144	Lysmd2	6.623625	6.9621	8.29726667	1.33516667
CONTRACTOR OF THE OWNER OF THE OWNER OF	10010004716	7.092125	10 2026	9.0130	2.000375	Chrnb1	6.426875	7.9322	9.54646667	1.61426667	Lamb2	7.066375	7.7187	9.048	1.3293
	100669053	7 1005	0.0162	9 2104	2 9067	Ospp13	7.527875	9.7649	11.3613333	1.59643333	117	6.64525	7.2405	8.56353333	1.32303333
(643)	Cycl14	6 770875	9 5464	9 91246667	2 775525	Dab2	8.93375	9.7897	11.3754667	1.58576667	Abcc4	7.710625	8.1019	9.40873333	1.30683333
	Emol	8.07525	10.8230	11 4702667	2 74865	Psat1	6.805875	7.7406	9.32493333	1.58433333	Fam148c	6.35475	6.8114	8.0946	1.2832
	Linpa	0.07323	10.02.07	11.4702007	2.74005	Anxa2	10.30275	12.468	14.0506667	1.58266667	Rab34	7.8555	8.5379	9.8148	1.2769

Fig. S3. Transcriptional profiling of Hippo pathway mutant liver tissue. (A) Venn diagram of genes selected by univariate test (two-sample *t* test) with a multivariate permutation test (10,000 random permutations). The blue circle (gene list X) represents genes differentially expressed between wild-type (WT) liver and all *sav1* and *mst1/2* nontumor liver samples. The red circle (gene list Y) represents genes differentially expressed between all *sav1* and *mst1/2* nontumor liver tissues and all *sav1* and *mst1/2* tumor (hepatocellular carcinoma, HCC) tissues. We applied a cutoff *P* value of <0.001 to retain genes whose expression is significantly different between the two groups of tissues examined. Below, expression patterns of selected genes in the Venn diagram are shown. Colored bars at the top of the heat map represent tissues as indicated. (*B–D*) Tabular data from microarray analysis including the 25 most highly up-regulated genes in each category. (*B*) "X not Y" represents transcripts that are differentially expressed in mutant nontumor tissues (ST: either from *sav1 or mst1/2* mutants) versus WT tissues. These transcripts represent cDNAs that are up- or down-regulated in response to attenuated Hippo signaling and may contribute to liver growth, oval cell response, liver injury, and predisposition to tumorigenesis. (*C*) "X and Y" represents transcripts that are differentially expressed in mutant nontumor tissues (ST: from either *sav1 or mst1/2* mutants) and in mutant nontumor tissues (ST) versus tumor tissues (HCC). These transcripts represent cDNAs that are up- or down-regulated in tort tissues as well as to transformation of mutant tissues to tumor tissues. (*D*) "Y not X" represents transcripts that are up- or down-regulated in tumor tissues (ST: from either *sav1 or mst1/2* mutants) and in mutant nontumor tissues (ST) versus tumor tissues (HCC). These transcripts represent cDNAs that may contribute to phenotypic differences between wild-type and mutant nontumor tissues as well as to transf

Fig. S4. Macrophage marker-positive cells accumulate in *sav1* and *mst1/2* mutant livers. The F4/80 antibody detects both resident liver macrophages (Kupffer cells) and infiltrating macrophage populations. (A) F4/80 staining of wild-type liver (red). Nuclei are counterstained blue with DAPI. (B) Albumin-cre;sav1 mutant tissue has slightly elevated numbers of F4/80-positive cells. (C) Albumin-cre;mst1,2 mutant tissue also has elevated F4/80 immunoreactivity.

Fig. S5. Antibody characterization of oval cell response in *mst1/2* mutants. The antibodies A6, OC2-1D11, and MIC1-1c3 stain ductal cells in wild type (see WT 10× and 40×). In *albumin-cre;mst1/2* mutants, A6, OC2-1D11, and MIC1-1c3 stain ductal cells and in addition populations of infiltrating periductal cells. This staining pattern is consistent with positive cells being oval cells. All sections were counterstained with DAPI. *Albumin-cre;sav1* mutants also exhibit enhanced A6 labeling at 4 months of age. A6 WT 10× and A6 *albumin-cre;mst1,2* 10× are reproduced from Fig. 4 and are shown here for comparison.

Other Supporting Information Files

Table S1 (XLS) Table S2 (XLS) Table S3 (XLS)

AS PNAS