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The equations of motion used for the adapting integrate-and-fire
neurons during the time between action potentials of neuron k are

duk=dt ¼ �uk=τcell þ Ibias þ Isynaptic þ Isensory � Iglobal − Jk [S1]

dJk=dt ¼ �Jk=τunadapt: [S2]

Jk represents an inward inhibitory current that could be caused
by Ca2+-dependent K+ channels in real neurons. Neuron k
produces an instantaneous action potential when uk reaches a
threshold of 10 mV, and uk is then reset to 0 and held at that
value for 2 ms to produce an absolute refractory period. Each
action potential produced by neuron k also allows a momentary
burst of Ca2+ ions to flow into that cell (through high-potential
Ca2+ channels) and increments Jk upward. Ca2+ also leaks out,
with a characteristic time τunadapt usually set at 5 s. Because Jk and
the internal Ca2+ ion concentration of neuron k are proportional,
the adaptive effect can be written in terms of the variables Jk, and
the cellular internal Ca2+ concentration is needed only to under-
stand a possible mechanism of spike-frequency adaptation. The
timescale of adaptation is set by the size of increment to Jk that
occurs when a neuron spikes. The parameter Ibias sets the resting
potential of the neurons.
Whenmodeling a spiking network with self-sustained collective

behaviors as in the present case, it is necessary to have enough
exciting spikes arriving within a synaptic integration time that the
self-sustained excitation is not likely to extinguish during a ran-
dom fluctuation of incoming spikes. This requires the product
(typical spiking rate of active place cells) × (synaptic current
duration) × (total number of place cells) × (fraction of place
cells to which any particular cell is synaptically coupled) >> 1.
The speed of practical simulations in Matlab limited the total
number of place cells in area E to 2000. For reasonable reso-
lution of the place cell system, the fraction of coupled place cells
was set at 0.03. To satisfy the inequality strongly, we made the
firing rates of highly active neurons about 40 Hz, larger than
typical in the hippocampus. Excitatory synaptic currents within
area E and from area E to area A are modeled as having an
instantaneous rise and an exponential fall, with a time constant
of 25 ms. Because the mode of operation of the overall system
can be captured by rate-based equations, the same results are
expected of a system with more total neurons and smaller firing
rates and synaptic time constants.
Area E implicitly contains a set of inhibitory interneurons

whose function is to limit the total activity this area, which would
otherwise run to very high rates due to the excitatory inter-
connectivity. Because this inhibitory feedback is global, and
because this essential function is computationally trivial, its effect
is modeled in a continuous fashion and using a single dynamical
variable rather than by using spiking interneurons. A variable x
represents the input current to this inhibitory system from the
excitatory cells of area E. This variable obeys

dx=dt ¼ �x=τinhib þ positive increment from each area E spike
[S3]

lglobal ∝x � xthresh if x> xthresh; otherwise lglobal ¼ 0: [S4]

x reflects the activity of area E, averaged over the time τinhib of 30
ms by Eq. S3. An inhibitory current Iglobal was introduced into
each cell, computed from Eq. S4. It can be thought of as being
generated by a set of inhibitory neurons with a firing threshold

xthresh and which have a firing rate that increases linearly above
threshold. The same kind of construction has been used in as-
sociative memory (1).
Sensory currents (when required) for each place cell are

modeled as having an isotropicGaussian formaround the center of
the receptivefield for that cell, with the samewidth and strength for
eachneuron.Whenmodelingmultiple environments, each cell has
a receptive field in each environment, assigned randomly.
The behavior of a motor control network was simulated as a

single effective neuron. It received excitatory synapses of equal
strength from all area A cells. Excitatory synaptic currents rise
instantaneously and decay exponentially with a 40-ms time
constant. The neuron also received (indirect) inhibitory synapses
from all area A cells, with a 20-ms time constant, and balanced in
strength so that when the sum of the firing rates of the area A cells
was constant, the motor control neuron received no input. This
combination, represented by IA in Eq. S5, results in a positive
current to the motor control when the total spiking rate of area
A is falling. Ib is a bias current

duk=dt ¼ �uk=τcell þ lb þ lA � J [S5]

dJ=dt ¼ �J=τrecovery: [S6]

J represents an inhibitory pathway, that in the single-neuron
description becomes an inhibitory self-connection that has a
characteristic decay time τrecovery = 40 ms. The motor control
neuron has the same time constant and threshold for spike gen-
eration as the neurons in areas A and E. However, in operation it
differs significantly from area A and E neurons in having a large
increment to J when an action potential is fired, an increment so
large that the cell does not fire again for many milliseconds.
When this cell fires an action potential, the direction of motion

of RR reverses (velocity vector V→ −V+ directional noise), with
noise distributing the resulting angle over a spread half-width
of ±60°. Because the inhibition from J keeps the cell from firing
immediately again, the RR will keep moving in roughly this same
direction for a while. By the time the cell can fire again, the input
to it will reflect whether this is a good direction of motion (and
the cell will not fire) or a poor direction (cell will fire). In typical
operation, this cell is firing in the 5–10 Hz range. The direction
of motion has Gaussian random noise introduced at each time
step to mimic the effect of environmental and system noise. This
produces a random walk of the direction of motion in the ab-
sence of control spikes, and is apparent in Fig. 1A.
There were 2016 neurons simulated in area E, and 1008 in area

A. Because of noise in the total synaptic current into a cell due to
the limited number of action potentials, the network sizes cannot
be made much smaller without destroying the stability of the
relevant bumpattractorbehavior. Forexample, if areaE is reduced
to 1008 neurons, undesirable (for the task at hand) spontaneous
jumps between environments tended to occur every few seconds.
Simulations were carried out using a Euler integration of the
differential equations and a 0.2-ms time step. Experiments were
also carried out with additive Gaussian noise, introduced at each
time step to represent the effect of other sources of noise on action
potential timing. Membrane noise at reasonable levels produced
only small effects because the operation of the system is chiefly
captured by rate-based considerations.
The rule for the spike-timing-dependent synaptic plasticity and

the formation of synapses within area E and between areas E and
A is described in the main text. A grid with regularly placed
centers was placed on each environment, and a place cell was
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positioned at the location of each of these centers plus random
Gaussian noise. These locations were used for the centers of the
sensory signals that drove the E and A neurons during the
learning exploration. The learning exploration used a randomRR
motor-generated trajectory. A first attempt was made to simply
put down place cells at random, but the fluctuations in place cell
density led to a terrain that was too wrinkled for complete mental
exploration. This problem would not occur if the number of cells
was increased by a factor of 10–100, or could be reduced by
additional adaptive mechanisms in a real system. The interesting
possibility that two environments α, β could be designed to have
the same sensory input at two locations, one in α and one in β,
was ignored.
The adaptive system has a limited ability to push a bump up

what would be a hill in a nonadaptive landscape. It contends best
with hills when its rate of adaptation is relatively high. This is not a
problem for mental exploration, which takes place rapidly when
the rate of adaptation is high. It can become a problem when
trying to guide a physical behavior with the very simple but rel-
atively ineffective motor control system, for it cannot keep up with
a rapid mental trajectory. In the simulations, this became an issue
only in the case of Fig. 5, where the terrain had to be made quite
flat in order that the mental motion not get stuck when the rate of
adaptation was set low in order for the physical motion and motor
control to be able to follow. Flattening was achieved by using only
a single environment for Fig. 5, and increasing the exploration
time for establishing intra-area-E synapses by a factor of 10 to
decrease the level of noise in the structure of the network. Such a
procedure was not necessary for Fig. 6 or for the movies, because
the motor control system performs better in the quasi-one-
dimensional situation of the T-shaped environments. This speed
issue is not a fundamental limitation to the use of these mental
exploration ideas in biology, where evolution can improve
adaptive propulsion performance, homeostasis can smooth out a
wrinkled terrain, and more effective motor control systems made
use of. Indeed, the limitations of the present control system arise
from noise in the spike arrivals from area A, and would be
reduced to insignificant if 10 times as many neurons had been
used in areas A and E.
Two other models of adaptation were tried, one based on

synaptic adaptation due to vesicle depletion and one on an
adapting threshold for firing. Both produced results that are
quantitatively similar to those presented here. The model pre-
sented was chosen because it is easily related to an adapting
energy function landscape description when spiking neurons are
replaced by a rate-based description with continuous variables,
and thus seems the best candidate for deeper mathematical
analysis.
Although Eq. S2 was described in terms of Ca2+ fluxes and a

Ca2+-dependent inhibitory current, its form is mathematically
equivalent to that of an inhibitory self-synapse with a time con-
stant τunadapt. This can be represented by a negative diagonal
term in a synaptic connectivity matrix. If a conversion is made to
rate-based mathematics, and replacing Iglobal by all-to-all in-
hibitory synapses of strength ε, the entire E system is equivalent
to a set of nonadaptive neurons with synaptic connections. A set of
rate-based equations can be written as below. The firing rate f(i)
of the model neuron as a function of input current i increases
monotonically from zero to a maximal value as i increases.

dik=dt ¼ �ik=τsyn þ Σ Skjf
�
ij þ lsensory þ aj

�
[S7]

dak=dt ¼ �ak=τunadapt � μ f
�
ik þ lsensory þ ak

�
[S8]

Skj ¼ Tkj � ε [S9]

The connection matrix S is the same as T with an additional
(negative) term −ε representing the effect of inhibition. The

variables ak describe the adaptation process. Because T is sym-
metric (or very nearly so), S is also.
The term involving μ has the mathematical form of a self-

connection, leaving the overall connection pattern symmetric.
Why, then, does this system have a long-term dynamical behavior
that is different from that of simple symmetric networks, and
that gives it fundamentally new capabilities? If τsyn = τunadapt, a
change of variables to xk = ik + ak allows the second equation to
be combined with the first, yielding

dxk=dt ¼ �xk=τsyn þ Σ Rkjf
�
Xj þ lsensory

�
[S10]

Rkj ¼ Tkj � ε� μδkjj: [S11]

R is symmetric, and this system has the usual Lyapunov function
(2). When, however, the unadaptation time constant is long
compared to the synaptic time constant (the ratio used was
typically 200:1) this is not the case, and exploratory behavior
results. Eqs. S7–S9 describe most of the exploratory activity,
although lacking the effects of “noise” caused by spiking on
pathway choice and pathway persistence. (Without spike noise,
the performance of the simple motor control system can be
dramatically improved.)
If the adaptation parameters ak are held fixed and there is no

sensory input Isensory, a Lyapunov function can be written for Eq.
S7 with the notation fk = f(ik + ak):

L ¼ 1=τsynΣ
R fk f�1ðxÞdx � 1=τsynΣ akfk � 1=2 ΣΣ Skjfjfk: [S12]

Because the values of ak when frozen at an instant of time during
the natural evolution of the system are negative, the second term
in L is positive. In the case of Fig. 3 G and H, this positive term
can be decreased more rapidly by the bump moving to the right
(where the bump has not yet been and the system is not now
adapted) than to the left, and thus the bump will move to the
right.

Activity Movies. Movies S1 and S2 show what an experiment with
the quality of cellular recording now available in rodent multi-
electrode studies in the hippocampus might find during one
particular behavior of the RR. The behavior of the RR is ap-
propriate to a task in which a water reward is available first at
one of the three ends of a T maze, then at another (different
from the previous one), then at another (different from the
previous one). . .. The frame rate is 10 s−1. The red asterisk shows
the instantaneous position of the RR at each frame time. Each
cell is displayed as a dot at the spatial location of the center of its
receptive field. A dot is present or absent in a frame according to
whether the cell has spiked within the previous 0.1 s. Thus, the
dots represent strongly active cells. One hundred place cells
(area E) or 50 place cells (area A) were chosen to typify what can
currently be done in rat isolated unit multielectrode hippo-
campal recording. The actual spatial trajectory between succes-
sive frames is complex, so there is a small intrinsic ambiguity in
the implied comparison of instantaneous position with neural
activity defined over a time interval.
The E area Movie S1 has a superficial appearance conforming

to the conventional description “the animal moves from location
to location (cause of that motion not specified), and the pattern
of neurons which are active follow that motion because they are
indirectly coupled to sensory stimuli which drive them, and have
location-specific sensory receptive fields.”
Yet there is sensory input to area E only in the first frame of the

movie, setting an initial mental state that corresponds to the initial
location of the RR. In all other frames there is no sensory input to
E. The correct explanation of the movie is: “The animal is located
near the mean of the place cell centers of the strongly active
neurons because there is a motor control system that causes the
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animal to make its physical location correspond to a bump ac-
tivity pattern present in E. The activity pattern in area E is a self-
generated bump that moves around spontaneously, with no
sensory input whatsoever to E.” The appropriate metabehavior of
moving from one limb of the T to another is spontaneously
generated by area E. This becomes the metacommand that
(using a comparison with real sensory signals done in area A)
results in actual motor commands which cause the position of
the RR in real space to correspond to the bump location. The
cause and effect that are responsible for the correlation between
activity bump and physical location in the movie are reversed
from that of the conventional description of the previous para-
graph.

Movie S2 of area A place cell activity is made in the same
fashion. These cells have both sensory inputs and inputs from
area E. The movie is superficially similar to Movie S1. Careful
inspection suggests that the fraction of active cells can vary more
in area A, but the effect is subtle when so few cells are recorded
from. The movies also suggest the presence of a little “antici-
pation” on the part of the place cells, especially of area E. This
is, of course, not anticipation in terms of sensory system antici-
pation (which in a real animal might be done on the basis of the
statistics of previously experienced dynamical stimuli), but is
instead due to the fact that causative neural activity must pre-
cede motor actions.
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Movie S1. RR position and place cell activity in area E during behavior.

Movie S1
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Movie S2. RR position and place cell activity in area A during behavior.

Movie S2
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