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Abstract

In this technical report, we give detailed information about how to establish asymptotic

theory for the intrinsic least-squares estimates of unknown parameters. We establish the

consistency and asymptotic normality for the intrinsic least-squares estimates.



1 Assumptions

The following assumptions are needed to facilitate development of our methods, although they

are not the weakest possible conditions.

(C1) β∗ is an unique interior point of B, where B is a compact set in Rp.

(C2) All functions in Ci(β) and Σi(β) are three times continuously differentiable on B. Let

gi(β) = tr(Ei(β)2), ||∂βgi(β)||2 and ||∂2
βgi(β)|| are dominated by Fi, which is a function of Si

and xi. Moreover, Ci(β) and Σi(β) are invertible matrices at least in an open neighborhood

of β∗.

(C3) For each ε > 0, there exists a finite K such that supn≥1 n−1
∑n

i=1 E[F 2
i 1(Fi > K)] < ε,

where 1(Fi > K) is the indicator function of Fi > K.

(C4) limn→∞ n−1E[−∂2
βGn(β∗)] = A1(β∗) and limn→∞ n−1

∑n
i=1 E{[∂βgi(β∗)]⊗2} = A2(β∗),

where A1(β∗) is positive definite.

Remarks 1: Assumptions (C1)-(C4) are standard conditions for ensuring the first order

asymptotic properties (e.g., consistency and asymptotic normality) of M-estimators when the

sample size is large (van der Vaart and Wellner 1996). With additional assumptions, we can

establish higher order asymptotic results of saddlepoint approximations and the bootstrap

approach, which are useful for small sample sizes. Due to space limitations, we will present

them elsewhere.

Remarks 2: It should be noted that there may be multiple β∗ that satisfy ∂βGn(β) =

0 for some specifications of C(x, β). For instance, for the first specification of C(x, β) in

∂βGn(β) = 0, β1 and −β1 are indistinguishable from the data. However, because these

different true values β∗ are isolated points in B, we can establish asymptotic properties of

β̂ for β∗, which are close to β̂ (Zhu and Zhang 2006). Numerically, the value of β̂ depends

on the starting value of β. In practice, we can also impose additional constraints to ensure

uniqueness of β∗ and β̂. For instance, for the first specification of C(x,β) in ∂βGn(β) = 0,

we may standardize all the covariates and impose that the intercept term in xT
i β1 is greater
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than zero and thus the ambiguity of β∗ and β̂ can be eliminated.

Remarks 3: Since Gn(β) is generally not concave, it is difficult to guarantee that the

estimator β̂ produced by our estimation procedure is the global minimum of Gn(β). Similar

to many statistical models including generalized linear models, we can only prove asymptotic

existence and properties of a sequence of ’local minima’ β̂ in a neighborhood of β∗ (Gan and

Jiang 1999; Fahrmeir and Kaufmann 1985; Small, Wang, and Yang 2003).

2 Proofs

First, we calculate the first and second derivatives of Gn(β) with respect to β. We obtain

Lemma 1 as follows.

Lemma 1. Under (C2), the following results hold:

(i) the a-th element of the p× 1 vector ∂βGn(β) is given by

∂βaGn(β) = −2
n∑

i=1

tr{Ei(β)[Ci(β)−1∂βaCi(β) + ∂βaCi(β)TCi(β)−T ]} (1)

= −2
n∑

i=1

tr{Ei(β)Ci(β)−1∂βaΣi(β)Ci(β)−T },

where ∂βa = ∂/∂βa, in which βa is the a-th element of β;

(ii) the (a, b)-th element of the p× p matrix ∂βGn(β) is given by

∂2
βaβb

Gn(β) = −2
n∑

i=1

tr{∂βb
Ei(β)[Ci(β)−1∂βaCi(β) + ∂βaCi(β)TCi(β)−T ]}

−2
n∑

i=1

tr{Ei(β)∂βb
[Ci(β)−1∂βaCi(β) + ∂βaCi(β)TCi(β)−T ]},

where ∂2
βaβb

= ∂2/∂βa∂βb and ∂βb
Ei(β) =

∫ 1
0 h(s,β)ds, in which

h(s,β) = {[S̃i(β)− I3]s + I3}−1∂βb
S̃i(β){[S̃i(β)− I3]s + I3}−1 (2)

and S̃i(β) = exp(Ei(β)) = Ci(β)−1SiCi(β)−T ;

(iii) ∂βGn(β∗) is unbiased, that is, E[∂βGn(β∗)|xi] = 0, and the conditional expectation

2



of ∂2
abGn(β∗) given xi equals

E[∂2
βaβb

Gn(β∗)|xi] = −2
n∑

i=1

tr{E[∂βb
Ei(β∗)|xi][Ci(β∗)

−1∂βaCi(β∗) + ∂βaCi(β∗)
TCi(β∗)

−T ]}

= −2
n∑

i=1

tr{E[∂βb
Ei(β∗)|xi][Ci(β∗)

−1∂βaΣi(β∗)Ci(β∗)
−T ]}. (3)

Proof of Lemma 1. (i) It follows from Proposition 2.1 in Maher (2005) that

∂βaGn(β) =
n∑

i=1

∂βatr{[log(Ci(β)−1SiCi(β)−T )]2}

= 2
n∑

i=1

tr[Ei(β)Ci(β)TS−1
i Ci(β)∂βa(Ci(β)−1SiCi(β)−T )].

Because S̃i(β)Ei(β) = exp(Ei(β))Ei(β) = Ei(β)S̃i(β) and

∂βa(Ci(β)−1SiCi(β)−T ) = −Ci(β)−1∂βaCi(β)S̃i(β)− S̃i(β)∂βaCi(β)TCi(β)−T ,

we have

∂βaGn(β) = −2
n∑

i=1

tr[Ei(β)S̃i(β)−1Ci(β)−1∂βaCi(β)S̃i(β) + Ei(β)S̃i(β)−1S̃i(β)∂βaCi(β)TCi(β)−T ]

= −2
n∑

i=1

tr[S̃i(β)Ei(β)S̃i(β)−1Ci(β)−1∂βaCi(β) + Ei(β)∂βaCi(β)TCi(β)−T ]

= −2
n∑

i=1

tr[Ei(β)(Ci(β)−1∂βaCi(β) + ∂βaCi(β)TCi(β)−T )].

This proves Lemma 1 (i). With some additional calculations, we can get Lemma 1 (ii). More-

over, a proof of (2) can be found in Dieci, Morini, and Papini (1996). Since E[Ei(β)|xi] = 0,

we obtain Lemma 1 (iii).

Lemma 1 gives the explicit forms of the first and second order derivatives of Gn(β)

with respect to β. In practice, we suggest approximating ∂2
βaβb

Gn(β) by the first term

−2
∑n

i=1 tr{∂βb
Ei(β)[Ci(β)−1∂βaCi(β) + ∂βaCi(β)TCi(β)−T ]}, since the expectation of

−2
n∑

i=1

tr{Ei(β)∂βb
[Ci(β)−1∂βaCi(β) + ∂βaCi(β)TCi(β)−T ]}

equals zero at β∗. In addition, computing ∂2
βaβb

Gn(β) involves a one-dimensional integration

of ∂βb
Ei(β) in (2). Throughout the paper, we use the composite trapezoidal rule for 100 equally

spaced nodes to approximate ∂βb
Ei(β) (Burden and Faires 2000).
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Proof of Theorem 1. We prove Theorem 1 in two parts. The first part proves weak consistency

of β̂. We only need to show that

sup
β∈B

n−1|Gn(β)−E[Gn(β)]| → 0 (4)

in probability and E[Gn(β)] is continuous in β uniformly over β ∈ Θ. Conditions (C2) and

(C3) are sufficient for Assumption W-LIP in Andrews (1992), which ensures the continuity of

E[Gn(β)] and the stochastic equicontinuity (SE) of Gn(β). Furthermore, Conditions (C2) and

(C3) ensure pointwise convergence, that is, n−1{Gn(β)−E[Gn(β)]} converges to zero for each

β in probability. Thus, combining SE and pointwise convergence yields (4). Combining (4)

and (C1) ensures weak consistency of β̂.

The second part shows that

√
n(β̂ − β∗) = A1(β∗)

−1 1√
n

n∑

i=1

∂βgi(β∗) + op(1). (5)

Conditions (C1)-(C4) are sufficient for establishing (5) (Andrews 1999). Applying the Linde-

berg Theorem completes the proof of Theorem 1.

Proof of Theorem 2. To derive the score test statistic Wn, we need additional notation as

follows. Without loss of generality, we assume that R = (R1,R2), in which R1 is an r × r

nonsingular matrix and R2 is an r × (p − r) matrix. Let β = (βT
(1), β

T
(2))

T , where β(1) is an

r × 1 vector corresponding to R1 and β(2) is a (p − r) × 1 vector corresponding to R2. If

we define µ = R1β(1) + R2β(2) − b0, then there exists a one-to-one correspondence between

θ = (µ, β(2)) = f(β) and β = f−1(θ). Thus, we have

∂(β1, β2)
∂(µ, β2)

=




R−1
1 −R−1

1 R2

0 Ip−r


 .

Moreover, the first- and second-order derivatives of Gn(β) with respect to µ are given by

∂µGn(β) = (R−1
1 ,0)∂βGn(β),

∂2
µβGn(β) = (R−1

1 ,0)∂2
βGn(β),
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and

∂2
µGn(β) = (R−1

1 ,0)∂2
βGn(β)(R−1

1 ,0)T .

We obtain the asymptotic distribution of the test statistic Wn as follows. Let θ∗ = (0, β(2)∗)

be the true parameter vector of β under H0 and θ̃ = f(0, β̃(2)) is the ILSE of θ under H0.

Assume that Gn(θ) = Gn(f−1(θ)) and

−∂2
θGn(θ) = V(µ,β(2)) =




Vµµ Vµβ(2)

Vβ(2)µ
Vβ(2)β(2)


 .

Similar to Theorem 1, we have β̃(2) − β(2)∗ = V−1

β(2)β(2)

∂β(2)
Gn(θ∗)[1 + op(1)]. Second, using

a Taylor’s series expansion leads to

∂µGn(θ̃) = ∂µGn(θ∗)−Vµβ(2)
V−1

β(2)β(2)

∂β(2)
Gn(θ∗)[1 + op(1)] =

n∑

i=1

Ui(0, β̃(2))[1 + op(1)],

where Ui(θ) = ∂µgi(f−1(θ))−Vµβ(2)
V−1

β(2)β(2)

∂β(2)
gi(f−1(θ)). We define Ûi,µ(β̃) = ∂µgi(β̃)−

V̂µβ(2)
V̂−1

β(2)β(2)

∂β(2)
gi(β̃), where V̂µβ(2)

= Vµβ(2)
(0, β̃(2)) and Vβ(2)β(2)

= Vβ(2)β(2)
(0, β̃(2)).

We define Îµµ = n−1
∑n

i=1[Ûi,µ(β̃)−Uµ(β̃)][Ûi,µ(β̃)−Uµ(β̃)]T , where Uµ(β̃) =
∑n

i=1 Ûi,µ(β̃)/n.

Under (C1)-(C4), n−1/2Î−1/2
µµ ∂µGn(θ̃) converges to a Gaussian distribution with mean 0 and

covariance matrix Ir; consequently, Wn is asymptotically distributed as a χ2(r) distribution

under H0.

3 Figure for Significance Testing of Age Effect
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Figure 1: Significance testing of age effect: color-coded maps of raw and adjusted p-values in four

selected ROIs of the reference brain. The color scale reflects the magnitude of the values of − log10(P ),

with black to blue representing smaller values (0-1) and red to white representing larger values (1.88-3).

Row 1: adjusted − log10(P ) values of the score statistics based on our test procedure for the correction of

multiple comparisons. Row 2: raw − log10(P ) values of the score statistics based on a χ2 distribution.

Row 3: selected ROIs with FA values greater than 0.4. After correcting for multiple comparisons,

statistically significant age effects remain in the inferior longitudinal fasciculus.
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