Martin Schlee^{1*}, Andreas Roth^{1*}, Veit Hornung², Cristina Amparo Hagmann¹, Vera Wimmenauer¹, Winfried Barchet¹, Christoph Coch¹, Markus Janke¹, Aleksandra Mihailovic⁴, Greg Wardle⁴, Stefan Juranek⁴, Hiroki Kato³, Taro Kawai³, Hendrik Poeck¹, Katherine A. Fitzgerald², Osamu Takeuchi³, Shizuo Akira³, Thomas Tuschl⁴, Eicke Latz², Janos Ludwig^{1,4} and Gunther Hartmann¹

¹Institute of Clinical Chemistry and Pharmacology, University of Bonn, Germany

²Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, USA

³Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan ⁴Howard Hughes Medical Institute, Laboratory of RNA Biology, The Rockefeller Unversity, New York, USA

Supplementary Table, Figures, Legends and Literature

Suppl. Table 1: Sequences

Name	Sequence	5' end	Туре	Source
3P-A	ACACACACACACACACACUUU	3P	RNA	see methods
ivt3P-G	<u>G</u> ACACACACACACACACACUUU	3P	RNA	IVT
ivt3P-Gaca	<u>G</u> ACACACACACACACACACACA	3P	RNA	IVT
3P-G	<u>G</u> ACACACACACACACACACUUU	3P	RNA	see methods
3P-C	<u>C</u> ACACACACACACACACACUUU	3P	RNA	see methods
3P-U	<u>U</u> ACACACACACACACACACUUU	3P	RNA	see methods
HO-A	ACACACACACACACACACUUU	OH	RNA	Biomers
P-A	ACACACACACACACACACUUU	Р	RNA	Metabion
P-G	GACACACACACACACACACUUU	Р	RNA	Biomers
P-C	<u>C</u> ACACACACACACACACACUUU	Р	RNA	Biomers
P-U	<u>U</u> ACACACACACACACACACUUU	Р	RNA	Biomers
AS A34	AAAGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGU	OH	RNA	Biomers
AS A26	AAAGUGUGUGUGUGUGUGUGUGUGUGU	OH	RNA	Biomers
AS A25	AAAGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGU	OH	RNA	Biomers
AS A24+2A	AAAAAGUGUGUGUGUGUGUGUGUGU <u>U</u>	OH	RNA	Biomers
AS A24+A	AAAAGUGUGUGUGUGUGUGUGUGUGU	OH	RNA	Biomers
AS A24	AAAGUGUGUGUGUGUGUGUGUGU <u>U</u>	OH*	RNA	Biomers
AS A23	AAGUGUGUGUGUGUGUGUGUGU <u>U</u>	OH	RNA	Biomers
AS A21	GUGUGUGUGUGUGUGUGUGU <u>U</u>	OH	RNA	Biomers
AS A20	UGUGUGUGUGUGUGUGUGU <u>U</u>	OH*	RNA	Biomers
AS A19	GUGUGUGUGUGUGUGUGU	OH	RNA	Biomers
AS G26	AAAGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGU	OH	RNA	Biomers
AS G25	AAAGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGU	OH	RNA	Biomers
AS G24+2A	AAAAAGUGUGUGUGUGUGUGUGUGUGU <u>C</u>	OH	RNA	Biomers
AS G24+A	AAAAGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUG	OH	RNA	Biomers
AS G24	AAAGUGUGUGUGUGUGUGUGUGUGU <u>C</u>	OH	RNA	Biomers
AS G23	AAGUGUGUGUGUGUGUGUGUGUGU <u>C</u>	OH	RNA	Biomers
AS G21	GUGUGUGUGUGUGUGUGUGU <u>C</u>	OH	RNA	Biomers
AS G20	UGUGUGUGUGUGUGUGUGU <u>C</u>	OH	RNA	Biomers
AS G19	GUGUGUGUGUGUGUGUGU <u>C</u>	OH	RNA	Biomers
AS G17	GUGUGUGUGUGUGUGU <u>C</u>	OH	RNA	Biomers
AS G15	GUGUGUGUGUGUGU <u>C</u>	OH	RNA	Biomers
AS G13	GUGUGUGUGUGU <u>C</u>	OH	RNA	Biomers
AS C26	AAAGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGU	OH	RNA	Biomers
AS C24	AAAGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGU	OH	RNA	Biomers

AS U26	AAAGUGUGUGUGUGUGUGUGUGUGUGU	OH	RNA	Biomers
AS U24	AAAGUGUGUGUGUGUGUGUGUGU <u>A</u>	OH	RNA	Biomers
AS23	AAAGUGUGUGUGUGUGUGUGUGU	OH*	RNA	Biomers
AS21	AAAGUGUGUGUGUGUGUGUGU	OH	RNA	Biomers
AS19	AAAGUGUGUGUGUGUGUGU	OH	RNA	Biomers
IVT2	GACGACGACGACGACGACGACGACGACGAC	3P	RNA	IVT
dAdT	(AT) ₂₀₀₋₄₀₀₀	Р	DNA	Sigma
ASGFP2 24	AAGAUGAACUUCAGGGUCAGCGUC	OH	RNA	Biomers
ASGFP2 2+5'24	AAGAUGAACUUCAGGGUCAGCGUCAA	OH	RNA	Biomers
ASGFP2 3'23	AAGAUGAACUUCAGGGUCAGCGU	OH	RNA	Biomers
ASGFP2 3'21	AAGAUGAACUUCAGGGUCAGC	OH	RNA	Biomers
ASGFP2 3'19	AAGAUGAACUUCAGGGUCA	OH	RNA	Biomers
ASGFP2 5'21	AUGAACUUCAGGGUCAGCGUC	OH	RNA	Biomers
ASGFP2 5'20	UGAACUUCAGGGUCAGCGUC	OH	RNA	Biomers
ASGFP2 5'19	GAACUUCAGGGUCAGCGUC	OH	RNA	Biomers
ASGFP2 5'18	AACUUCAGGGUCAGCGUC	OH	RNA	Biomers
ASGFP2 5'16	CUUCAGGGUCAGCGUC	OH	RNA	Biomers
ASGFP2 5'14	UCAGGGUCAGCGUC	OH	RNA	Biomers
ASGFP2 5'9	GUCAGCGUC	OH	RNA	Biomers
AS GFP2 C>U1	AAGAUGAACUUCAGGGUCAGCGU <u>U</u>	OH	RNA	Biomers
AS GFP2 C>A1	AAGAUGAACUUCAGGGUCAGCGUA	OH	RNA	Biomers
AS GFP2 U>A2	AAGAUGAACUUCAGGGUCAGCGAC	OH	RNA	Biomers
AS GFP2 8b3	AAGAUGAACUUCAGAGCCAGCGUC	OH	RNA	Biomers
HO-VH1-bio**	ACACACACACACACACACAAAACC	OH	RNA	Dharmacon
3P-VH1-bio**	ACACACACACACACACACAAAACC	OH	RNA	see methods
AS-VH1	GGUUUUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGU	OH	RNA	Dharmacon
3P-GFP1	GGGGCUGACCCUGAAGUUCAUCUU	3P	RNA	see methods
3P-GFP2	GACGCUGACCCUGAAGUUCAUCUU	3P	RNA	see methods
3P-GFP3	GGGGCGCUGACGCCCUGAAGUUCA	3P	RNA	see methods
Rabies Panhandle match	GACGCUUAACAAAUAAACAACAAAAAUGAGAAAA ACAAUCAUAUGUCUGUUUUUUUUUU	3P	RNA	IVT
Rabies Panhandle mismatch	GACGCUUAACAAAUAAACAACAAAAAUGAGAAAA ACAAUCAUAUGUCUGUUUUUUUUUU	3P	RNA	IVT

RNA and DNA stimuli. 3P = triphosphate, P = monophosphate, IVT = in vitro transription

 \ast Oligos used for alpha screen were labeled with biotin at the 5' end.

** VH1-bio and 3P-VH1-bio were labeled with c6-biotin at the 3' end.

Suppl. Fig. 1

T7 polymerase in vitro transcription mix contains high amounts of sequences not encoded by the DNA-template.

Indicated ssRNA and dsRNA oligonucleotides and in vitro-transcribed RNA (ivt3P-Gaca) were digested by RNaseT under native conditions (37°C, upper panel) or denaturating conditions ((Nallagatla et al., 2007), 6M urea, 50°C, lower panel). After digestion, the RNA was separated by urea polyacrylamide gelelectrophoresis and stained with Methylene Blue. The RNA length marker is denoted as number of nt.

Suppl. Fig. 2: Transcript coded "de novo" synthesis and self-coding intramolecular 3'extension are responsible for RIG-I inducing activity of in vitro-transcribed RNA.

a: IVTs were performed with whole NTP mix (3P-Gaca) or without UTP (3P-Gaca w/o, see Fig. 1f). Ivt3P-Gaca was separated by PAGE. The RNA length marker is denoted as number of nt. RNAs from gel bands 1-5 of ivt3P-Gaca were extracted. Extracted RNAs alone (b) or hybridized with total ivt3P-Gaca w/o U (c) were transfected into monocytes as indicated and compared to the total reaction mixtures of *ivt3P-Gaca* and *ivt3P-Gaca w/o* U. d: RNA extracted from indicated bands were analysed by PAGE and Methylene Blue staining. e: Sequences obtained from reverse cloning of extracted RNA from band 1 and 3. f: Putative immunotimulatory double-stranded 3P-RNA hybrids composed of sequences from (e).

Suppl. Fig. 3: Length and 5´ and 3´ overhang impact on IFN-α stimulating activity of short double strand RNA.

Purified monocytes were stimulated with the indicated single strand or double strand synthetic RNA oligonucleotides. IFN- α production was analyzed 24 hours after stimulation. a: 3P-G and 3P-A hybridized with antisense strands of different lengths and binding positions are compared. b: 3P-A hybridized with an antisense strand resulting in a double strand RNA with a 10 base long 3 overhang at the triphosphate end.

Suppl. Fig. 4: Panhandle configuration of negative strand RNA viruses.

In *silico* hybridizations (Zuker, 2003) of the 5' and the 3' end of different negative strand RNA viruses. The 5' nucleoside is always adenosin.

References

Nallagatla, S.R., Hwang, J., Toroney, R., Zheng, X., Cameron, C.E., and Bevilacqua, P.C. (2007). 5'-triphosphate-dependent activation of PKR by RNAs with short stemloops. Science *318*, 1455-1458.

Zuker, M. (2003). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res *31*, 3406-3415.