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1 The effect of weak temporal correlation in the

noise process.

In the one-dimensional generic model (Eq. 7 in the paper) we assumed that the
noise process was temporally uncorrelated (so called white noise). To test the
effect of having a noise process with temporal correlations we run simulations
in which this correlations had the form a(h) = 0.985200·(h−1) where h is lag
and has the units of milliseconds. Fig. 1A shows the noise autocorrelation.
For h > 2 ms the correlation is essentially zero. Fig. 1B,C show response
distributions (time to 80% of the units up) as a function of absolute and relative
time respectively. It is clear that the temporally correlated noise does not affect
the time-scale invariance. We expect this to be the case whenever the width of
the autocorrelation is small in comparison to the time intervals of interest.

2 The effect of interactions between the units

Here we will exemplify the general rule (given by Eq. 6 in the paper) for how
to modify the activation rates.

2.1 All-to-all interactions

In this case the activation rates of the units are the same for all units but
this rate depends on the total state of the stop-watch (the number of activated
units). If we denote this activation rate by pa(t) (“a” for all-to-all) we get the
following rule of how to change pa as a function of the total number of activated
units:

pa(t) = p

(

1 + w
m(t)

M

)

. (1)
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Figure 1: Effect of temporally correlated noise on performance of the 1D model.
A: Autocorrelation function of the noise process in Eq. 7 in main paper. B:
Response time distributions for two values of the constant term. The gray
curve shows the distribution corresponding to µ = −0.009 and the black that to
µ = −0.013. C: Same data as in B but after rescaling time. Parameters used:
M = 50, f = 0.8, β = 0.19, σ = 0.004. Results based on 2000 trials of the
stop-watch, for each value of the input. Simulations were run using the explicit
Euler method with a step size of 0.005.

Here p is the baseline activation rate that does not depend on the state of
the stop-watch (consistent with the usage in the paper), w is a small constant
measuring the magnitude of the interactions (w is positive for “excitatory”
interactions and negative for “inhibitory”) and m(t) is the number of activated
units at time t. Note that if w = 0 we are back in the case of non-interacting
units. Also note that we could apply any non-linear transformation of m(t) in
Eq. 1 without upsetting the scale invariance.

Intervals of different durations can still be encoded by changing p, just as
in the non-interacting case, but now the mean and standard deviations of Tf ·M

are given by

E[Tf ·M ] =
1

p

f ·M−1
∑

k=0

1

(M − k)(1 + kw/M)

S[Tf.M ] =
1

p

(

f.M−1
∑

k=0

1

[(M − k)(1 + kw/M)]2

)1/2

.

(2)

These expressions can be derived analogously to how the corresponding expres-
sions for the non-interacting case were derived (in the main paper).

2.2 Sparse and random interactions

Here we let the activation rate of each unit be dependent on the state of n other,
randomly selected, units. This means that the activation rates at a particular
point in time would typically differ between units but the stop-watch would still
be scale invariant if the following rule is used

pi(t) = p

(

1 + w
mi(t)

M

)

. (3)

Here pi(t) denotes the activation rate of unit i and mi is the number of units
“connected” to unit i that are activated. Also in this case time-intervals of
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Figure 2: Coefficient of variation for the stop-watch with units connected ac-
cording to equation 4, M=50 and w

M = 0.0000005

different durations can be encoded by changing p. Expressions for the distri-
bution of Tf ·M can in principle be derived but will depend on the exact way
that units interact. Note that neither the sparseness nor the randomness of the
interactions will influence the scale invariance.

2.3 Additive interactions

We also note that if the interaction is additive, scale invariance will in general
not be preserved. Indeed in the case of all-to-all “connectivity” we get the
following rule

pc = p + w
m

M
. (4)

That this will not lead to scale invariant behavior can be understood by noting
that to encode two different time intervals we change p but not w (by assump-
tion). That is, the effect of the interactions is not scale invariant. Of course, if
the relevant values of p are much larger than w, the system will be approximately
time-scale invariant (since it can be approximated well by the unconnected sys-
tem). Figure 2 illustrates this point, showing that for w

M = 0.0000005 the
variations of the CV are small when p changes one order of magnitude (from
p = 0.0001 to p = 0.001). The CVs were calculated using the following expres-
sions for the mean and standard deviation of Tf ·M , which were derived as the
corresponding expressions for the unconnected system.

E[Tf ·M ] =

f ·M−1
∑

k=0

1

(M − k)(p + kw/M)

S[Tf.M ] =

(

f.M−1
∑

k=0

1

[(M − k)(p + kw/M)]2

)1/2

.

(5)
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3 The effect of noise in the output of the stop-

watch units

In demonstrating scale invariance we have assumed that the state of the stop-
watch (i.e. the number of units activated at time t) is known to the read-out
mechanism. This may or may not be the case in a real implementation and it
is therefore of interest to investigate the effect of making the stop-watch units
noisy (in the sense of not unequivocally signaling their state).

In this section we will consider a case in which the state of one unit is
signalled by a realization of a Poisson process of a certain rate. This is as if the
stop-watch units were firing action potentials according to a Poisson process
with two different rates, one for the spontaneous state and another for the
activated state. It is clear that the performance of the stop-watch will depend
on the rate difference between the two states. If this difference is very large, the
read-out mechanism will never be ’confused’ about which state the stop-watch
is in and the performance will be identical to the situation without noise in the
outputs. If the difference is small, on the other hand, it will be impossible (for
any imaginable causal read-out mechanism) to know the state of the stop-watch
with certainty. Below we will show data from two cases. The activated state is
in both cases associated with a rate of 10 Hz and we will investigate the effect
of increasing the rate of the spontaneous state from 0 to 5 Hz.

3.1 The read-out mechanism

In the following we assume that the read-out unit will receive the sum of the
outputs from the stop-watch units. Given the Poissonian assumption, the read-
out unit will consequently receive a Poissonian spike train with a rate that
depends on the state of the stop-watch. For example, if at time t there are 28
units (of 50, say) activated and the rates are 5 and 10 for the spontaneous and
activated states respectively, the read-out unit will ’see’ a Poisson spike train of
390 Hz (10 ·28+22 ·5). To investigate the ’response timing’ we need an explicit
response rule that determines when the read-out unit should issue a ’response’.
We were not aware of any ’standard’ procedure for a case such as this, so we
came up with the following heuristic device:

• Fix an upper Θu and a lower Θl rate-threshold (e.g. 450 and 400 Hz).

• For each ’spike’ time, sum the z previous inter-spike intervals.

• Calculate the likelihood that this sum comes from each of two Poisson
processes specified by the two thresholds above. Call these likelihoods
L(Θu) and L(Θl).

• Find the first sequence where L(Θu) > L(Θl) for m consecutive time-
points and take the last of these points as the time-point of the response.

We do not claim that this is the optimal way of testing the hypothesis that the
rate of the stop-watch output exceeds a certain level, but it works in practice.
It is important to note that this ’response mechanism’ was not designed to
produce scale invariant responding. The main criteria used was to achieve a
monotonous increase in the mean ’response’ times and moderate CVs. To use
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the sum of the ISIs as the statistic of choice is roughly equivalent to making a
local estimate of the firing rate (by for example counting the number of events
in a given time window), but it is computationally more efficient. Note that
there are four parameters, the two thresholds and, the number of ISIs to sum
(z) and the length of the sequence where the likelihood of the higher rate should
exceed that of the lower (m). However, once the rates for the stop-watch unit
are decided upon, the upper threshold will be constrained. For example, we
know that the variability of the stop-watch is at a minimum when 80% of the
units are activated. In terms of the example above this means that we should
set the upper threshold at 450 Hz. Once the upper threshold is set the lower
threshold is limited by this and some small number. In practice it was chosen so
that the difference of the likelihoods was a reasonably smooth curve. That is, if
we would choose a lower threshold of 449 this would make the likelihoods almost
identical and the difference between the two dominated by sampling noise. The
values of the other two parameters were set in order to optimize the detection.

3.2 Results

We will show two cases in which the procedure outlined above gave rise to ap-
proximately time-scale invariant responses. The firing rate of a stop-watch unit
in the activated state was fixed at 10 Hz but in the spontaneous state it could
be either 0 or 5 Hz. We used a stop-watch with 50 units and investigated six
different values of the activation rate (corresponding to an expected ’response’
time of 40 units activated of 1,2,5,10,20, and 50 seconds respectively). For each
of these values we first generated one realization of the stop-watch. We then
used this realization to generate a Poisson spike train with a rate that changed
accordingly. This spike train was then the input to the device outlined above
and on each trial a response time was collected. This was repeated 5000 times
for each value of the activation rate. Fig. 3 shows the mean response time and
the CVs for the two cases corresponding to the two different spiking rates of the
spontaneous state. It is clear that the mean response time is increasing as the
activation rate decreases, but the relation between the two is no longer described
by Eq. 1 in the main text. Indeed the decrease is sub-linear compared to the
stop-watch without noise. This slower increase is due to that we use the same
value of m for all values of the activation rates. The read-out procedure is es-
sentially a statistical test that is repeated many times until the null-hypothesis
(of that the rate is less than the high threshold) is rejected. For the longer
time intervals there are many more opportunities for this to happen before the
the true rate has reached the right level. To have a more linear increase the
parameter m would need to increase with the length of the interval. We note
however that the important thing is that the mean ’response’ time is increas-
ing monotonously, the rate of the increase is relatively unimportant. Fig. 3
also shows that the CVs are relatively constant in both cases. For the shortest
time interval (corresponding to one second in the noise-free model) there is a
slight (but significant) deviation. This is presumably an effect of that the rate
is changing very fast in this case, so for the large value of z we used (z = 55)
there will be ISIs corresponding to many different rates.

We have chosen parameters (m and z) to make the read-out approximately
scale invariant. We did not make an exhaustive search over the parameter space
and there are most likely parameters for which the system is even more scale
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Figure 3: Average ’response’ time and CV for the Poisson noise model. Top
graph shows the average ’response’ time produced by the read-out mechanism
outlined in the text. Bottom graph shows the corresponding CVs. Each data
point is based on 5000 simulations (trials). The standard errors for the CV
data are too small to be seen on the graph. The units of the X-axis are the
expected ’response’ times of the stop-watch (without noise) with a threshold of
40 activated units. The thresholds were 400 and 300 for the 0 and 10 Hz case
and 450 and 400 for the other. The other parameters were z = 55 and m = 9.



7

invariant. Of course there are also parameters for which the system will be less
scale invariant. However, this example serves to show that the stop-watch can
be used to estimate time intervals even if the outputs of the stop-watch units
are very noisy.

4 The micro-circuit model

Each unit of the model consists of three interconnected neurons. One neuron is
modeled using two compartments one corresponding to the soma and axon and
one to the dendrites. For neuron i, the membrane potentials of the soma (V s

i )
and dendrites (V d

i ) are given by:

Cm
dV s

i

dt
= −ILeak(V

s
i ) − INa,i − IKDr,i − gc

(V s
i − V d

i )

p

Cm
dV d

i

dt
= −ILeak(V

d
i ) − gc

(V s
i − V d

i )

1 − p
− Ii,

where Cm = 0.5µF/cm2 is the membrane capacitance, p = 0.5 is the relative
area of the somatic membrane and gc = 0.5mS/cm2 is the conductance between
the soma and dendrite. The leak current was ILeak(V ) = gLeak(V − VLeak) for
both compartments, with gLeak = 0.1mS/cm2 being the leak conductance and
VLeak = −80mV the leak reversal potential. The sodium current (INa) and
the delayed rectifier potassium current (IKDr) were modeled using the Hodgkin-
Huxley formalism. The gating variables obey:

dx

dt
= Φx[αx(V (1 − x) − βx(V )x] = Φx

x∞(V ) − x

τx(V )
,

where

x∞(V ) =
αm(V )

αm(V ) + βm(V )
,

τx(V ) =
1

αm(V ) + βm(V )

and where x can be m, h or n and are the activation and inactivation gates.
The sodium current is INa = gNam

3h(V − VNa), where gNa = 45mS/cm2 is the
maximal sodium conductance,VNa = 55mV is the sodium reversal potential,

αm =
−0.1(V + 32)

e−(V +32)/10
− 1

,

βm = 4e−(V +57)/18,

αh = 0.07e−(V +48)/20,

βh =
1

e−(V +18)/10 + 1
,

and Φm = Φh = 2.5. The potassium current is IKDr = gKn4(V − VKDr), were
gK = 18mS/cm2 is the maximal potassium conductance, VK = −80mV is the
potassium reversal potential,

αn =
−0.01(V + 34)

e−(V +34)/10
− 1

,
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βn = 0.125e−(V +44)/80,

and Φn = 5. All variables having units of electrical potential and time are in
units of millivolt and millisecond, respectively.

The input do the dendritic compartment is a sum of one NMDA mediated
current due to the recurrent connections and one external current I = INMDA +
Iext, where for the ith neuron

INMDAi =

3
∑

j=1

gNMDAsij
(V d

i − Vsyn)

1 + 0.3[Mg2+]e−0.08V d

i

,

where [Mg2+] = 0.5mM is the magnesium concentration, Vsyn = 0, gNMDA =
22µS/cm2, j refers to the presynaptic neurons,

ds

dt
= αsx(1 − s) − βss,

dx

dt
= αxF (V s

j )(1 − x) − βxx,

F (V s
j ) =

1

1 + e−V s

j
/2

,

αs = 1, βs = 0.01, αx = 10 and βx = 0.5 (in 1/ms).
The external input Iext was modeled as a constant mean plus a random

term, Iext = µ + σξ(t). The amplitude of the random term was σ = 0.25 and
the different values of µ used to encode different interval durations are stated
in the main paper.


