Supplementary Information:

NMDAR-mediated EPSCs are maintained and accelerate in time-course during maturation of mouse and rat auditory brainstem, *in vitro*

Joern R. Steinert, Michael Postlethwaite, Melissa D. Jordan, Tatyana Chernova, Susan Robinson and Ian D. Forsythe

MRC Toxicology Unit, Hodgkin Building, University of Leicester, Leicester LE1 9HN, UK

Supplementary Figure 1. Immunohistochemistry of NR2A (left) and NR2B (right) for P11, P21 and P35 rat MNTB. Similar levels of staining are apparent at P11, but by P35 the staining for NR2A is stronger than for NR2B. Similar data was seen in 3 rats.

Supplementary Figure 2. NMDAR-dependent Ca²⁺ increases at young and mature synapses. A, 200Hz train for synaptic stimulation, raw traces of 340/380nm Fura 2 ratios from 1 cell under ctrl conditions and following application of AP-5 (50µM) and MK 801 (10µM) or CNOX (10µM). B, 340/380nm Fura 2 plateau ratios are measured following 200Hz trains of synaptic stimulation in MNTB neurons from young (P12, filled) and mature (P31, open) animals. Application of the NMDAR antagonists AP-5 (50 μ M) and MK 801 (10 μ M) suppressed the Ca²⁺ response in both ages to a similar degree. Further addition of the AMPAR antagonist CNQX (10 μ M) suppressed almost all of the Ca²⁺ response. Data denote means±SEM from 3 different cells. Significance was tested using ANOVA,* indicates significance relative to Ctrl.

А