Processing of the structural proteins of human immunodeficiency virus type 1 in the presence of monensin and cerulenin

(virus maturation/syncytia/immunoprecipitation)

RANAJIT PAL*, ROBERT C. GALLO[†], AND M. G. SARNGADHARAN*

*Department of Cell Biology, Bionetics Research, Inc., 1330-A Piccard Drive, Rockville, MD 20850; and [†]Laboratory of Tumor Cell Biology, National Cancer Institute, Bethesda, MD 20892

Contributed by Robert C. Gallo, August 30, 1988

ABSTRACT The synthesis and processing of structural proteins of human immunodeficiency virus type 1 (HIV-1) were studied in infected cells treated with monensin and cerulenin. In MOLT-3 cells chronically infected with HTLV-III_B, monensin inhibited the proteolytic cleavage of the env-coded polyprotein gp160 to gp120, leading to the accumulation of the precursor gp160. The formation of syncytia normally observed when CEM cells are cocultivated with HIV-1-infected MOLT-3 cells was significantly inhibited in the presence of monensin. The effect of the ionophore on the culture was reversible, as withdrawal of monensin from the medium restored the ability of the cells to form syncytia with CEM cells and led to the resumption of the processing of gp160 to gp120. Monensin did not affect the synthesis and processing of gag-coded proteins and regulatory proteins. Cerulenin, an inhibitor of de novo fatty acid biosynthesis, inhibited the myristoylation and the proteolytic cleavage of the gag-coded polyprotein Pr53gag to p24 but did not affect the processing of gp160. However, use for monensin and cerulenin as antiviral agents for treatment of HIV-1 infection cannot be foreseen because of the pronounced in vitro toxicity observed.

The gag and env gene products of the acquired immunodeficiency syndrome (AIDS) retrovirus, human immunodeficiency virus type 1 (HIV-1) (1-3), are synthesized in the form of precursor polyproteins-Pr53gag and gp160, respectivelyin the infected cell (4). Pr53^{gag} undergoes posttranslational cleavage to structural proteins of M_r 17,000, 24,000, and 15,000 (5). The envelope precursor protein is cleaved into two structural glycosylated proteins: gp120, the amino-terminal exterior component, and gp41, the carboxyl-terminal transmembrane portion (6, 7). A number of compounds are known to affect the processing and maturation of viral proteins in the infected cells. The monovalent carboxylic ionophore monensin inhibits the transport and expression of membrane glycoproteins and several secretory proteins (8-11). This ionophore has been demonstrated to affect the maturation of certain enveloped viruses by inhibiting the migration of envelope proteins to the plasma membrane (12-18). The antibiotic cerulenin, an inhibitor of de novo fatty acid and sterol synthesis, inhibits the fatty acylation of the glycoproteins of vesicular stomatitis virus and Sindbis virus and the maturation of complete virions (19). In cells infected with Moloney murine leukemia virus, cerulenin appeared to significantly decrease the maturation and release of the virus into the culture medium by inhibiting cleavage of the gag- and env-coded precursor polyproteins (20). In this communication we report the effect of monensin and cerulenin on the processing of env and gag proteins of HIV-1.

MATERIALS AND METHODS

Virus and Cells. Chronically infected MOLT-3/HTLV-III_B cells and uninfected CEM cells were maintained in RPMI-1640 medium (Advanced Biotechnologies, Columbia, MD) supplemented with 10% fetal bovine serum, 1 mM glutamine, and 100 units of penicillin and 100 μ g of streptomycin per ml.

Radiolabeling of Cells with [³⁵S]Methionine and Immunoprecipitation Assays. MOLT-3/HTLV-III_B cells were radiolabeled by incubation at 37°C for 7 hr in methionine-free medium supplemented with [³⁵S]methionine (100 μ Ci/ml; 1 μ Ci = 37 kBq) (6). Labeled cells were washed with Ca²⁺- and Mg²⁺-free phosphate-buffered saline (PBS) and disrupted at 4°C in PBS containing 0.1% NaDodSO₄, 1% Triton X-100, and 0.5% sodium deoxycholate. Immunoprecipitation of lysates was as described (6).

Syncytium Assay. Syncytium assays were performed in 96-well microtiter plates by mixing, in 200 μ l of medium, 10⁵ CEM cells with 10⁴ chronically infected MOLT-3/HTLV-III_B cells. The plates were incubated in a CO₂ incubator at 37°C for 40 hr and the number of giant cells in each well was determined by microscopic examination.

RESULTS

Synthesis of HIV-1 Proteins of MOLT-3/HTLV-III_B Cells Treated with Monensin. To determine the effect of monensin on the synthesis of HIV-1 proteins in infected cells, MOLT-3/HTLV-III_B cells were radiolabeled with [³⁵S]methionine in the presence of various concentrations of monensin (Sigma). It was observed that these chronically infected cells (10⁶ cells per ml) could be maintained without any loss of cell viability for 7 hr when treated with 10 μ M monensin. After 7 hr of treatment with monensin, the cells were harvested and the immunoreactive proteins were precipitated with human serum containing antibodies to all the major HIV-1 proteins. Monensin markedly inhibited the proteolytic processing of gp160 to gp120 (Fig. 1A). At 10 μ M concentration there was a significant amount of gp160 accumulated in the infected cells. At all concentrations of monensin, a protein of M_r ≈ 100.000 appeared in the immunoprecipitates (lanes 2-6). The proportion of the gag proteins Pr53gag (indicated as p53 in figures) and p24 remained substantially unchanged after monensin treatment. Monensin treatment also had no effect on the expression of tat, vif, and nef (4) gene products (Fig. 1B). These studies thus demonstrate that the effect of monensin was specific for the processing of the env proteins.

To study the basis for the accumulation of gp160 in monensin-treated cells, a pulse-chase analysis of the stability of the glycoproteins was performed both in the absence and in the presence of monensin. MOLT-3/HTLV-III_B cells treated with 7.5 μ M monensin were radiolabeled with [³⁵S]methionine for 1 hr and the label was subsequently

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "*advertisement*" in accordance with 18 U.S.C. §1734 solely to indicate this fact.

Abbreviation: HIV-1, human immunodeficiency virus type 1.

FIG. 1. HIV-1 protein profile of MOLT-3/HTLV-III_B cells treated with monensin. (A) Lysates of [35 S]methionine-labeled MOLT-3/HTLV-III_B cells were analyzed by immunoprecipitation with HIV-1 antibody-positive human serum. Monensin concentrations were 0 (lane 1), 1.25 (lane 2), 2.5 (lane 3), 5 (lane 4), 7.5 (lane 5), and 10 (lane 6) μ M. (B) Lysates of cells treated with 10 μ M monensin (lanes 8, 10, and 12) and untreated control cells (lanes 7, 9, and 11) were analyzed by immunoprecipitation with rabbit antibodies to HIV-1 *tat* (lanes 7 and 8), *vif* (lanes 9 and 10), and *nef* (lanes 11 and 12) gene products. Arrows mark the respective positions of the gene products.

"chased" by incubating the cells with nonradioactive methionine for up to 4 hr. The cells were harvested at various times and the level of intracellular viral proteins was determined by immunoprecipitation with a human serum. In untreated control cells there were significant decreases in labeled gp160 and Pr53^{gag}, with corresponding increases in gp120 and p24, respectively, during the chase (Fig. 2, lanes 1–3). In sharp contrast, in monensin-treated cells only the gag proteins underwent normal processing. There was a marked reduction of the proteolytic cleavage of gp160 (lanes 4–6). The labeled gp160 that accumulated in monensintreated cells could not be processed in the presence of a lysate of untreated infected cells, suggesting that the processing of gp160 took place in intact organelles and could not be accomplished in cell-free extracts (data not shown).

Effect of Monensin on the Syncytium Formation by MOLT-3/HTLV-III_B Cells. One of the consequences of HIV-1 infection is the formation of multinucleated giant cells resulting from cell-cell fusion (1). The envelope glycoprotein gp120 has been shown to interact with the CD4 molecule of the target cells (21–23) to initiate the process of infection, which

FIG. 2. Analysis of the metabolic fate of HIV-1 proteins in untreated and monensin-treated cells. Cells were pulsed for 60 min with [35 S]methionine (100 μ Ci/ml) in the absence (lanes 1–3) or presence (lanes 4–6) of 7.5 μ M monensin. The label was chased for 0 min (lanes 1 and 4), 60 min (lanes 2 and 5), or 240 min (lanes 3 and 6). The labeled proteins were immunoprecipitated with a human antiserum and analyzed by NaDodSO₄/PAGE.

in most cases results in the formation of multinucleated giant cells (24). It was of interest to determine whether the inhibition of the processing of gp160 in infected cells would affect the induction of syncytium formation by these cells in uninfected CEM cells. For this, MOLT-3/HTLV-III_B cells were cocultured with uninfected CEM cells in the presence of 1-10 nM monensin. The number of syncytia was markedly reduced for cells treated with >3 nM monensin compared to untreated cells when observed after the normal incubation time of 40 hr (Fig. 3A). However, when the incubation was extended for an additional 24 hr an increased number of syncytia was observed in control cells. Under these conditions 3 nM monensin, which gave partial inhibition in the 40-hr experiment, was almost noninhibitory. It is quite likely that some of the ionophore might have degraded in the culture medium during the extended incubation, leading to the apparent reversal of the syncytium blocking.

To understand whether the inhibition of syncytium formation by monensin was reversible, MOLT-3/HTLV-III_B cells were treated with 10 μ M monensin for 7 hr, washed free of the ionophore, and cocultured with CEM cells in monensinfree medium. Multiple syncytia resembling those of the untreated cells were observed (Fig. 3B). Accompanying this reversal of syncytium blocking was the restoration of the proteolytic processing of gp160 to gp120 after withdrawal of the drug (Fig. 3C).

Synthesis of HIV-1 Proteins in MOLT-3/HTLV-III_B Cells Treated with Cerulenin. To determine whether cerulenin affects the processing of HIV-1 proteins, MOLT-3/HTLV-III_B cells were labeled with [³⁵S]methionine in the presence of different concentrations of cerulenin (CalBiochem-Behring). The chronically infected cells could be maintained without any loss of viability when treated with cerulenin (10 μ g/ml) for 7 hr. The labeled cells were harvested and their extract was immunoprecipitated with a HIV-1 antibodypositive human serum. There was a general inhibition of viral protein synthesis at higher concentrations of cerulenin (Fig. 4A). However, the proteolytic cleavage of Pr53^{gag} to p24 was selectively inhibited in cerulenin-treated cells. Interestingly, at a concentration of cerulenin that virtually stopped the cleavage of Pr53^{gag} to p24 (10 μ g/ml), myristoylation of $Pr53^{gag}$ was still detected, albeit at a low level (Fig. 4B).

The stability of the Pr53^{gag} accumulated following cerulenin treatment was determined by pulse-chase experiments.

FIG. 3. Reversibility of the monensin effect on glycoprotein processing and on syncytium formation between CEM cells and MOLT-3/HTLV-III_B cells. (A) CEM cells cocultured with MOLT-3/HTLV-III_B cells were scored for syncytia after 40 hr (lower curve) or 72 hr (upper curve) in the absence or presence of monensin as indicated. (B) Micrograph 1, untreated control culture described in A at 40 hr. Micrograph 2, MOLT-3/HTLV-III_B cells (10⁶ cells per ml) treated with 10 μ M monensin for 7 hr, harvested, washed free of monensin, and cocultured with CEM cells in the absence of monensin for 40 hr. (C) [³⁵S]Methionine-labeled MOLT-3/HTLV-III_B cells were lysed and analyzed by immunoprecipitation using a human antiserum. Lane 1, cells not treated with monensin; lane 2, cells labeled in the presence of 10 μ M monensin (same as Fig. 1, lane 6); lane 3, cells treated with 10 μ M monensin for 7 hr, washed, and cultured overnight in monensin-free medium before labeling.

MOLT-3/HTLV-III_B cells were radiolabeled for 1 hr in the presence of cerulenin (7.5 μ g/ml) and the label was then chased for up to 4 hr. The cells were harvested at various

times and the intracellular protein profile was determined by immunoprecipitation. $Pr53^{gag}$ was processed to p24 in untreated MOLT-3/HTLV-III_B cells (Fig. 4C, lanes 10–12).

FIG. 4. Intracellular protein profile of MOLT-3/HTLV-III_B cells treated with various concentrations of cerulenin. (A) Lysates of [³⁵S]methionine-labeled MOLT-3/HTLV-III_B cells were immunoprecipitated with a HIV antibody-positive human serum. Concentrations of cerulenin for lanes 1–6 were 0, 2.5, 5, 7.5, 10, and 12.5 μ g/ml, respectively. (B) MOLT-3/HTLV-III_B cells (10⁶ cells per ml) were labeled with [³H]myristic acid (100 μ Ci/ml) for 7 hr. Cerulenin was absent (lane 7) or present at 7.5 (lane 8) or 10 (lane 9) μ g/ml. (C) Pulse-chase study of HIV-1 proteins in untreated (lane 10–12) and cerulenin (7.5 μ g/ml)-treated cells (lanes 13–15) was performed by metabolic labeling of MOLT-3/HTLV-III_B cells with [³⁵S]methionine as described in the legend to Fig. 2. Chase periods were 0 min (lanes 10 and 13), 60 min (lanes 11 and 14), and 240 min (lanes 12 and 15).

However, no significant processing of Pr53gag was observed under similar conditions in cerulenin-treated cells (lanes 13-15).

DISCUSSION

We describe here the effects of a carboxylic ionophore, monensin, and an inhibitor of fatty acid biosynthesis, cerulenin, on the processing of HIV-1 proteins. Monensin up to a concentration of 10 μ M was found to have little effect on the de novo protein synthesis in the HIV-1-infected cells. However, treatment of HTLV-III_B-infected MOLT-3 cells with monensin for 7 hr inhibited the proteolytic conversion of gp160 to gp120 and gp41. In addition, a protein of M_r \approx 100,000 was immunoprecipitated. A similar protein was formed in MOLT-3/HTLV-III_B cells treated with 1deoxymannojirimycin, an inhibitor of the trimming enzyme mannosidase I in the Golgi complex (unpublished data). Thus this protein may represent a cleavage product of gp160 and contain untrimmed oligosaccharide chains. Inhibition of syncytium formation by monensin tends to suggest that the viral glycoproteins in the ionophore-treated cells were not transported to the cell surface from Golgi membrane and therefore not available for the binding to the CD4 molecule. The inhibition of syncytium formation was reversible upon withdrawal of the ionophore, as was the inhibition of the cleavage of gp160 to gp120 in the infected cells. It has been suggested that at moderate concentrations (0.1-1 μ M) the metabolic effects of monensin on cells are ultimately reversible (11). This might be due to a slow degradation of monensin in the culture medium. Presumably for the same reason syncytium assays performed over long incubation periods led to a restoration of syncytia, provided that the initial concentration of monensin was low.

The effect of monensin on the processing and maturation of membrane glycoproteins has been studied in a number of enveloped viruses. Although monensin blocks the transfer of newly synthesized G glycoprotein of vesicular stomatitis virus from the Golgi complex to the plasma membrane of the infected cells, thereby severely inhibiting the release of virus particles into the medium (12), hemagglutinin of influenza virus was transported in its presence to the plasma membrane in a functional form (13). Among retroviruses, monensin inhibited the processing and transport to the plasma membrane of the glycoprotein precursor in Friend murine leukemia virus (16) but did not affect the intracellular migration of glycoproteins in Mason-Pfizer monkey virus (15). It is interesting that monensin has diverse effects on the different virus systems that have been studied. How much of the differential effect depends on the primary structure of the viral glycoprotein and how much depends on the type of the host cell are not understood. In any case, it is likely that this ionophore will be useful to understand the biosynthesis and transport of HIV-1 envelope glycoproteins in the infected host cells. Because they are potent inhibitors of general metabolic pathways, and because of their observed in vitro toxicity, neither monensin nor cerulenin could be considered a candidate for clinical application as an antiviral agent.

Cerulenin, an inhibitor of de novo fatty acid and sterol synthesis, inhibits maturation of vesicular stomatitis virus and Sindbis virus (19). In mouse fibroblasts chronically infected with Moloney murine leukemia virus, the antibiotic inhibited the release of the mature virions into the culture medium by inhibiting the proteolytic cleavage of gag- and env-coded precursor polyproteins (20). In this communication we have demonstrated that the treatment of HTLV-III_B-infected MOLT-3 cells with cerulenin inhibited the cleavage of Pr53^{gag} to p24. Myristoylation of Pr53^{gag} was also

inhibited by cerulenin. It is not clear how the cleavage of Pr53^{gag} was inhibited by cerulenin. One possible explanation is that the antibiotic acts as an inhibitor of viral protease, which is responsible for processing the gag polyprotein. Another possibility is that the myristovlation of the gag protein is essential for its interaction with intracellular membranes where the cleavage of Pr53^{gag} to p24 takes place. Inhibition of myristoylation by cerulenin might affect the interaction of the gag polyprotein with the membrane, thereby affecting its accessibility to the protease.

We thank George Hoke for technical assistance, Drs. Dani Bolognesi and Thomas Matthews of Duke University for the gift of CEM cells, and Joan Jackson and Sharon Orndorff for editorial assistance. This work was supported in part by the National Cancer Institute under Contract NOI-CP-73725 with Bionetics Research, Inc.

- Popovic, M., Sarngadharan, M. G., Read, E. & Gallo, R. C. 1. (1984) Science 224, 497-500.
- 2. Gallo, R. C., Salahuddin, S. Z., Popovic, M., Shearer, G. M., Kaplan, M., Haynes, B. F., Palker, T. J., Redfield, R., Oleske, J., Safai, B., White, G., Foster, P. & Markham, P. D. (1984) Science 224, 500-503.
- Barre-Sinoussi, F., Chermann, J.-C., Rey, F., Nugeyre, M. T., 3. Chamaret, S., Gruest, J., Dauguet, C., Axler-Blin, C., Brun-Vezinet, F., Rouzioux, C., Rozenbaum, W. & Montagnier, L. (1983) Science 220, 868-871.
- 4. Sarngadharan, M. G. & Markham, P. D. (1987) in Acquired Immunodeficiency Syndrome and Other Manifestations of HIV-Infection, eds. Wormser, G. P., Stahl, R. E. & Bottone, E. J. (Noyes, Park Ridge, NJ).
- 5. Veronese, F. D., Copeland, T. D., Oroszlan, S., Gallo, R. C. & Sarngadharan, M. G. (1988) J. Virol. 62, 795-801
- 6. Veronese, F. D., DeVico, A. L., Copeland, T. D., Oroszlan, S., Gallo, R. C. & Sarngadharan, M. G. (1985) Science 229, 1402-1405.
- 7. Allan, J. S., Coligan, J. E., Barin, F., McLane, M. F., Sodroski, J. G., Rosen, C. A., Haseltine, W. A., Lee, T. H. & Essex, M. (1985) Science 228, 1091-1094.
- Uchida, N., Smilowitz, H. & Tanzer, M. L. (1979) Proc. Natl. 8. Acad. Sci. USA 76, 1868–1872. Tartakoff, A. M. & Vassalli, P. (1977) J. Exp. Med. 146, 1332–
- 9. 1345.
- 10. Ledger, P. W., Uchida, N. & Tanzer, M. L. (1981) J. Cell Biol. 87, 663-671.
- Tartakoff, A. M. (1983) Cell 32, 1026-1028. 11
- Johnson, D. C. & Schlesinger, M. J. (1980) Virology 103, 407-12. 474
- Alonso, F. V. & Compans, R. W. (1981) J. Cell Biol. 89, 700-13. 705
- Kaariainen, L., Hashimoto, K., Saraste, J., Virtanen, I. & 14. Penttinen, K. (1980) J. Cell Biol. 87, 783–791. Chatterjee, S., Bradac, J. A. & Hunter, E. (1982) J. Virol. 44,
- 15. 1003-1012.
- 16. Srinivas, R. V., Melsen, L. R. & Compans, R. W. (1982) J. Virol. 42, 1067-1075.
- 17. Johnson, D. C. & Spear, P. G. (1982) J. Virol. 43, 1102-1112. Ghosh-Choudhury, N., Graham, A. & Ghosh, H. P. (1987) J. 18.
- Gen. Virol. 68, 1939-1949.
- 19. Schlesinger, M. J. & Malfer, C. (1982) J. Biol. Chem. 257, 9887-9890.
- 20.
- Ikuta, K. & Luftig, R. B. (1986) Virology 154, 195-206. Dalgleish, A. G., Beverly, P. C. L., Clapham, P. R., Craw-21. ford, D. H., Greaves, M. F. & Weiss, R. A. (1984) Nature (London) 312, 763-767.
- 22. Klatzmann, D., Champagne, E., Chamaret, S., Gruest, J., Guetard, D., Hercend, T., Gluckmann, J. C. & Montagnier, L. (1985) Nature (London) 312, 767-768.
- 23. McDougal, J. S., Kennedy, M. S., Sligh, J. M., Cort, S. P., Mawle, A. & Nicholson, J. K. A. (1986) Science 231, 382-385.
- Sodroski, J., Goh, W. C., Rosen, C., Campbell, K. & Hasel-24. tine, W. A. (1986) Nature (London) 322, 470-474.