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supplementary  figure  1

(stimulus-­driven  changes  in  variability  for  a  simple  simulation)



 
Supplementary figure 1.  Stimulus-driven changes in across-trial variability can be exhibited 

even by simple network architectures.  Details of the simulations are described in the 

supplementary materials below.  a. A simulated two-neuron recurrent network.  The inputs were 

initially zero, and stepped to new values at the indicated time.  The evolution of rates (!) was 

different on each trial, as the network contained noise.  One example trial is shown (saturated 

colored traces).  Light, thicker traces show the mean ! across all trials.  b. Simulated spike-trains 

were produced via an inhomogeneous Poisson process based on each trial’s !2.  25 trials are 

shown.  The FF (blue, bottom) was computed from 10,000 such trials, using a 100 ms sliding 

window (gray shading).  The dashed trace plots the true across-trial variance of !2.  The black 

arrow indicates the step input. 

In the absence of an input, this network has two shallow competing attractors.  It is thus 

unstable given small amounts of noise, but becomes more stable when driven.  As a consequence, 

average rates (thick light-colored traces in a) are initially unrepresentative of singe-trial firing 

rates (colored traces give each neuron’s rate for that trial).  Following the input step, single-trial 

rates hew more closely to their means; across-trial variability is reduced.  That decline depends on 

the attractor dynamics of this example ‘winner-take-all’ network.  A network with different 

dynamics – e.g., integrator dynamics1,2,3 – might produce rising variance.  As in Figure 1a of the 

text, mean rate alone may be inadequately informative.  For example, neuron 2 exhibits only a 

modest mean response (thick blue trace).  This might (mistakenly) suggest weak participation in 

the network computation.  In contrast, the sustained variance decline reveals the involvement of 

both neurons, and correctly suggests attractor dynamics. 
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(the  Fano  factor  for  simulated  data)
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Supplementary figure 2.  Verification of the mean-matching method for simulated data.  a.  

Illustration of how simulated data was produced.  Each neuron had a mean rate (thick gray trace) 

that underwent a change to a new value at 400 ms (left-hand edge of calibration bar).  On each 

simulated trial (50 in this case), the underlying rate (thin grey traces) differed from the mean.  

Beginning at 400 ms, this rate variance collapsed (with a time constant of 150 ms for this 

simulation).  On each trial, the underlying rate provided the ! for a renewal process that was used 

to produce spikes (rasters).  That process obeyed either Poisson, Poisson-with-refractory, or 

gamma-interval (order 2) spiking statistics.   

 Subsequent panels demonstrate the behavior of the ‘raw’ FF and the mean-matched FF 

under a variety of circumstances.  Gamma-interval spiking statistics provide the sternest test for 

the FF, as they most seriously violate the assumption that the spike-count variance scales linearly 

with the mean.  Thus, to demonstrate the robustness of the method, the simulations in panels b-f 

employ gamma spiking statistics.  Data similar to that in a were produced for 2000 simulated 

neuron-conditions (the equivalent of 20 conditions for 100 neurons).  Each neuron’s mean rate 

underwent a change at 400 ms, with the initial and final mean rates being drawn from uniform 

distributions over the intervals [0 35] and [0 50] spikes/s.  Thus, individual-neuron mean rates 

could either rise or fall, though the overall tendency was towards increasing rates.  Additional 

trial-to-trial variability, of a given magnitude and with a given time-constant, was then added to 

the mean rate (using the procedure that produced the thin grey traces in panel a).  This was done 

independently for each neuron-condition.  b. Application of the method to a simulation with no 

variability in underlying rate (i.e., where the thin gray traces in a were all superimposed on the 

mean).  The mean-matched FF (black, with flanking SEs) correctly reports little change in 

variance.  In contrast, the raw FF (grey) incorrectly reports a small drop, due to the gamma-

interval spiking statistics, which become more regular at higher rates.  The grey trace at top plots 

the ‘measured’ mean rate across all simulated neurons / conditions.  The black trace plots the 

mean rate after applying the mean-matching procedure.  c. Application of the method to a 

simulation with constant variability in the underlying rate (i.e., the thin traces in a never 

converge).  The mean-matched FF correctly reports little change in underlying variance.  The raw 

FF is again plagued by a small artifact.  The red trace plots the true (unchanging in this case) 

timecourse of underlying rate variability.  d-f. Similar plots, but for different time-constants for 

the convergence of the underlying rates.  The mean-matched FF approximately captures the true 

(red) timecourse.  The raw FF performs reasonably well, but tends – due to the rising rates and 

gamma-interval spiking statistics – to overestimate the steepness of the initial drop.  In summary, 



even when the Poisson assumption is violated, the mean-matched FF avoids artifacts that impact 

the raw FF (this was also true when we used an absolute refractory period, rather than gamma 

spiking statistics).  This allows the mean-matched FF to accurately capture underlying changes 

(or lack thereof) in rate variance. 

Panels g-i present an exploration of how the FF is affected by trial count.  For these 

simulations, there was no variability in the underlying rate, and spiking statistics were Poisson.  If 

well behaved, the FF should thus remain near unity for all times.  As above, firing rates changed 

at 400 ms, and 2000 ‘neuron-conditions’ were employed, with a range of initial and final mean 

firing rates.  g.  Initial and final mean-rate distributions (across neuron-conditions) were drawn 

from the intervals [0 15] and [0 35].  We simulated 50 trials per neuron-condition.  h. Same as g 

but with 5 trials per neuron-condition.  i. Same as h but with a lower initial range of rates, [0 5].  

Inspection of panels g-i reveals that neither the FF (gray) nor the mean-matched FF 

(black) is biased by a low trial count, or by a low initial range of rates.  In particular, the FF is not 

biased upwards for low rates / trial counts.  One might have expected this, as the denominator 

will often be near zero, but in those cases the numerator is similarly small.  That said, when both 

trial counts and spike rates are very low, mean-matching is not guaranteed to completely 

eliminate artifacts due to non-Poisson spiking.  Estimates of the mean are then poor, and mean-

matching becomes only approximate.  In this case, the mean-matched FF will show smaller 

artifactual changes than will the raw FF, but it may not behave perfectly.  For example, for 

gamma order-2 spiking, with low initial rates (0-5 spikes/s) and low trial counts (5), the raw FF 

will of course decline sharply with rising rates, and the mean-matched FF can actually show a 

slight rise.  However, we have never seen this pattern in real data, and all the datasets we 

analyzed had an average of at least 10 trials per condition, and often 100 (V1) or more (the V1 

datasets used for FA, the FF for which is plotted in Supplementary figure 6).            
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Supplementary figure 3.  An additional analysis to determine whether the decline in the Fano 

factor (FF) is due to declining firing rate variability, or to spiking statistics that become more 

regular.  This analysis complements the mean-matching method.  Mean-matching controls for 

changes in spiking statistics that are due to changing rates (e.g., the impact of a refractory period) 

but not for spiking statistics that might change for some other reason (e.g., perhaps spiking 

statistics change from Poisson to fourth-order gamma-interval due to some change in the nature 

of the synaptic input). 

To investigate this possibility, The FF was normalized by the square of the coefficient of 

variation (CV2) of the inter-spike intervals.  The FF/CV2 was computed using the method of 

Nawrot et al.4  That approach is based on the equality FF = CV2, which holds for any stationary 

renewal process in the limit of long windows.  Thus, a change in underlying spiking statistics 

(e.g., from Poisson to gamma-interval) may cause the FF to decline, but will not impact the 

FF/CV2 (both the numerator and denominator will decline similarly).  However, a decline in 

across-trial rate variability will be captured by the FF/CV2: the FF will decline much more than 

the CV2.  A hurdle to applying this method is that mean firing rates are typically very non-

stationary, at which point the above equality does not hold.  To overcome this, time is rescaled 

(separately for each neuron and condition) to produce a stationary mean rate.  The FF and CV2 

are then computed.  To account for underlying rates that may not always equal the mean, the CV2 

is computed on individual trials and then averaged.  After computing the FF/CV2, time is scaled 

back before averaging across neurons and conditions.   

 Panels a,b plot the results of this analysis using a 250 ms window  (250 ms of rescaled 

time, which can be more or less than 250 ms of actual time, depending on whether rates are low 

or high, respectively).  Arrows indicate stimulus onset.  The FF and CV2 are plotted individually 

at the top of each panel.  Their ratio is plotted with flanking standard errors.  The 250 ms window 

is longer than that used in other analyses (e.g., Figure 3).  A longer window is needed for the 

current analysis for two reasons.  First because the FF = CV2 equality holds only for long 

windows and second, to insure there are enough spikes within the window for the CV of the inter-

spike intervals to be estimated.  Also to this end, analysis was restricted to neurons/conditions 

where the mean number of spikes in the 250 ms analysis window was at least 4.  We further 

restricted the analysis to neurons where there was an average of at least 4 spikes during the pre-

target period.  Following this restriction, the median number of spikes/window was 9 (MT) and 5 

(PMd).  Panels c,d plot the same analysis, based on the same datasets, but using a 450 ms 

window.  We enforced a minimum mean number of spikes per window of 10 (MT) and 7 (PMd).  

The median number of spikes/window was 27 (MT) and 8.5 (PMd). 



For all the above analyses, the FF/CV2 fell following stimulus onset.  This decline was 

the result of a strongly declining FF, normalized by a CV2 that was both low and fairly constant 

(consistent with Figure 11d of Nawrot et al. 20084).  This confirms that the change in the FF is 

due to a change in across-trial underlying-rate variability, and not a change in the statistics of 

private spiking noise.  Had spiking statistics transitioned from irregular to regular, the CV2 of the 

inter-spike intervals would have undergone a large decline from an initially high value 

(paralleling the decline seen for the FF).  In that case the FF/CV2 ratio would have remained fairly 

constant.  Instead the CV2 is near or even slightly below unity (indicating spiking statistics 

slightly more regular than Poisson) at all times.  Note that the FF decline is much larger than in 

the analyses elsewhere in the study, a result of using a longer window (250 or 450 ms, versus 50 

ms in Figure 3).  This occurs because the impact of across-trial rate variability on the FF is 

strongly window dependent.   

Using the FF/CV2 method, the decline in variability is somewhat smeared in time 

(especially in c and d).  This is due to the necessity of a large analysis window.  Furthermore, 

given the need for time rescaling, the true size of the window varies (across time, neurons, and 

conditions) depending on the underlying rate.
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(FF  recovery  after  stimulus  offset)



Supplementary figure 4.  Timecourse of the recovery of the FF following stimulus offset.  This 

analysis could not be performed for all datasets, as it was common for data collection to cease 

following stimulus offset, or for behavioral control to be poor at that time (e.g., the animal may 

have made its response and be consuming its reward with no fixation requirements).  This 

analysis is thus restricted to the V1 dataset from Figure 6c, and the MT-speed dataset (Figure 3, 

bottom).  Both these datasets involved anaesthetized preparations.  For improved statistical 

power, a 100 ms window is used (the decline/recovery is not noticeably sharper with a 50 ms 

window).  a. Recovery of the FF in V1 following stimulus offset.  b. Recovery of the FF in MT 

following the offset of motion.  Note that for this dataset there are three key events: the onset of a 

static stimulus, the onset of motion, and the cessation of motion.  Offset of the static stimulus 

occurred after the end of the record. 
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Supplementary figure 5.  To illustrate the application of FA, we apply it to simulated data.  a. 

Two-dimensional rate trajectories for three simulated trials from the simple artificial network 

shown in Supplementary figure 1b.  Traces are grey for a 400 ms transition time following 

stimulus onset.  For 10,000 simulated trials, we computed the mean state in a 200 ms window, 

both before (Pre) and after (Post) the onset of the input.  Red ellipses plot the covariance across 

these measurements.  The variance decline is now evident as a decline in covariance-ellipse area 

from pre-input to post-input.  Unfortunately, in practice one measures not these underlying-rate 

covariances, but single-trial spike counts, simulated below by draws from Poisson distributions 

with rates !1 and !2.  Panel b plots the resulting single-trial estimates of spike rate (grey) and 

their covariance ellipses (dashed orange).  These ‘measurements’ are dominated by the Poisson 

spiking-process noise.  (Note that the fixed 200 ms measurement window produces discrete 

values.  For presentation, ‘jitter’ has thus been added to make clear where density is highest.)  Yet 

despite measurement noise, the underlying structure is recoverable (blue ellipses, see below), 

provided many trials and neurons.  We simulated 10,000 trials for 60 neurons, 30 each with rates 

!1 and !2.  We then used FA (panel c) to decompose the measured covariance into a network and 

private components.  The resulting network covariance ellipses (blue, panel b) accurately reflect 

the true underlying-rate covariance (red ellipses in panel a), despite non-Gaussian underlying 

data and spiking-process noise.  Estimating the blue network covariance ellipses required 

abundant data, but even modestly-sized datasets allow FA to estimate the network variances of 

individual neurons (blue diagonal in c).  To illustrate this, panel d plots the mean network 

variance across 200 trials for the 30 simulated units with rate !2.  FA accurately reports declining 

network (shared rate) variability, with little change in private spiking-process noise.  The full 

network covariance matrix was computed, but we subsequently averaged variances only for units 

with little change in mean rate (those with rate !2, whose mean changes little, see panel a and 

Supplementary figure 1b).  This aids interpretation; were mean rates not stabilized, spiking-

process noise would scale with rate.  We similarly restricted neural analysis in Figure 6 b–g to 

matched distributions of mean rates across time (much as was done for the FF). 
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Supplementary figure 6.  The FF (computed using the mean-matching method) for the V1 and 

PMd datasets that were used for FA (V1: 567R and 106R; PMd: G20040123 & G20040122).  

Panels a,b,c,d plot the FF for the same datasets used in Figure 6b,c,e,f (respectively) of the main 

text.  Format is similar to that of Figure 3 in the main text.  However, these datasets (unlike those 

in Figure 3) contained multi-unit isolations (see methods).  Nevertheless, similar drops in the FF 

were seen.  Also note that the changes in the FF (black with flanking SEs) do not always mirror 

those in the mean rate (grey).  For example, in panel a the FF decline is immediate while the 

mean rate ramps up in two successive steps.  In panel d, the FF initially declines as the mean rate 

is rising.  The FF then continues declining although the mean rate is by then falling. 
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 Supplementary figure 7.  Exploration of when FA might mis-assign variance from one source 

(e.g., network-level rate variance) to the other (e.g., private spiking noise).  This can happen if the 

specified dimensionality (rank) of the network covariance matrix is too low or too high.  In the 

former case, some network variability will be mis-assigned as private.  Thus, a decline in network 

variability will ‘leak’ into private noise.  This possibility is of minor concern, as it would imply 

that our results slightly underestimate the true effect.  This possibility is explored in a (see 

below).  Alternately, if the rank is too high, some private noise will be mis-assigned as network 

variance.  A decline in spiking-process variability (e.g., a change from Poisson to gamma-interval 

spiking statistic) could then appear as a decline in network variance.  This artifact is of potential 

concern, as our interpretation is that the observed variance decline has a network source and is 

not principally due to more a regular spiking-process.  It is perfectly acceptable if there is a real 

drop is spiking-process variability.  However, if spiking-process variability were ‘leaking’ 

heavily into network variability, this would make interpretation difficult.  A large leak is unlikely 

a priori: the changes in network variance seen in Figure 6 (of the main text) are larger than the 

changes in private noise, and remained so when we tested a range of dimensionalities (2-8, effects 

only become stronger for higher dimensionalities).  This is inconsistent with the primary effect 

being a change in private noise.  A further control is presented below (panels b-e).   

Panel a. Dark traces are the same as in Supplementary figure 5d.  Light traces plot the 

results of FA if the underlying network state had a higher dimensionality (6) but FA was still run 

assuming a dimensionality of 2.  This was accomplished using a simulation in which three 2-

neuron networks evolved independently.  This produced data that spanned 6 dimensions.  The key 

point is that when FA is run assuming a dimensionality that is too low, the algorithm has no 

choice but to assign some unexplained variance to private noise.  Private noise is initially inflated, 

and then appears to decline.  Such artifacts are possible because FA requires that we specify in 

advance the rank of the network covariance matrix (i.e., the dimensionality of the latent space, 

analogous to the number of principal components).  Often there is no certain way to do so, 

especially as cross-validation techniques will underestimate the true network dimensionality 

unless the dataset is very large.  We attempted to estimate the network dimensionality by 

assessing the dimensionality spanned by the mean population response across stimulus conditions 

(this yielded 4 and 5 dimensions for V1 and PMd, see methods).  Yet given that not all possible 

stimuli were tested, this approach may also underestimate the true dimensionality spanned by the 

network state.  Thus, the small decline in private spiking noise for the neural data, seen in Figure 

6b,c,e,f, may result from an artifact similar to that shown in this panel.  For finite data, this issue 

is difficult to resolve.  Note, however, that this makes the central result conservative: the true 



decline in network variance is likely larger than what is measured, on the assumption that we 

have underestimated the true dimensionality of the network space.   

Panels b-e.  Control for the converse concern to that addressed above.  Might private 

noise ‘leak’ into the network variance, especially if we assumed too high a dimensionality for FA.  

Analysis was the same as for Figure 6b,c,e,f of the main text.  However, analysis was applied to 

trial-shuffled data, so that there was no real covariance among neurons, only private noise.  This 

was done by taking the data matrix, D (for which each column corresponds to one neuron, and 

each row to one trial), and for each column reassigning the rows randomly.  This eliminates all 

correlation between neurons (i.e., all network variance) except that occurring by chance.  FA 

correctly assigns the majority of the variance, and the majority of the drop in variance, to private 

noise (black traces undergo the largest drops), with only a small ‘leak’ into the network variance.  

This occurs despite the fact that FA assumed the original latent dimensionalities (see methods), 

whereas the true dimensionality of the shared network variance was actually zero due to 

shuffling. 
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Supplementary figure 8.  Comparison of reaction-time outliers with ‘neural trajectory’ outliers.  

For the first PMd dataset (dataset G20040123) 5 trials had outlier RTs > 500 ms.  Here we ask if 

those trials also had unusual neural trajectories, as in Figure 7b of the main text (where the red 

trial was one of the 5 outliers).  The 5 outliers were spread across 3 targets.  We applied GPFA to 

the recordings for each of these targets, and computed the mean neural trajectory during the 400 

ms after the go cue.  We then calculated the average distance, in neural space, of each trial’s 

trajectory from the mean trajectory.  a. A histogram of these values.  b. A histogram of RTs.  The 

5 trials that were flagged as outliers based on their RTs are colored red in both plots.  It was 

indeed the case that the RT outliers were also outliers in terms of their neural trajectories.  c,d, 

same analysis but for a different day’s dataset (G20040122, same as in Figure 7c).  For this 

dataset there were three RT outliers (red), spread across three targets.  These were also outliers in 

neural space.  



  

Supplementary note 1.  For both PMd and V1 (the datasets where FA could be applied), we 

found that the ‘network’ state after stimulus onset tended to correlate with the network state pre-

stimulus.  This was assessed, after applying FA, and finding the network state on each trial.  Note 

that this is different from what was done in Figure 6 of the main text, where FA was used solely 

to estimate the network covariance matrix.  Here we are using FA to find the network state on 

each trial (analogous to using PCA, and finding each trial’s projection onto the first few PCs).  

Each trial’s datum becomes a point in a 5 (V1) or 4 (PMd) dimensional latent space.  On each 

trial, there is then one location (in one latent space) pre-stimulus, and another location (in a 

different latent space) during the stimulus.  We regressed the network state found during the 

stimulus against the pre-stimulus state.  For each stimulus-epoch dimension, data were regressed 

against all dimensions of pre-stimulus data.  For example, for V1 this led to 60 total comparisons 

(5 stimulus-epoch dimensions, 12 conditions).  Of 60 and 36 comparisons, 32% (V1) and 39% 

(PMd) showed a significant (p<0.05) correlation. 

 

 



Supplementary note 2.  A fundamental question, largely unaddressed in this study, is the source 

and meaning of the variability that is present before target onset.  On the one hand, such 

variability could be produced by local circuitry, which might be less stable when not driven.  For 

example, circuitry related to gain control5, involving lateral inhibition, might be less stable when 

un-driven, much like the network in Supplementary figure 1b.  A related hypothesis is that the 

decline in variability is related to the recruitment of shunting inhibition, and there is indeed good 

evidence for this in V16. 

A second possibility is that variability arises due to a lack of ‘internal’ behavioral control 

during the pre-stimulus period.  Even if external behavior (hand and eye position) is perfectly 

controlled during the baseline, the monkey’s attention and ‘thoughts’ certainly are not.  

Variability in cognitive factors might be expected to be high during the baseline, and then be 

reduced following stimulus onset.  In this view, variability is produced not by local circuitry, but 

by broader circuits involving attention or other cognitive phenomena. 

In support of the local-circuitry hypothesis, the decline in variability is readily apparent in 

all the datasets from anaesthetized animals (all V1 datasets and the two MT datasets used for the 

FF).  In support of the cognitive hypothesis, we have previously found that the decline in neural 

variability is predictive of reaction time, being faster for trials with shorter reaction times7.  This 

suggests that the trials where motor preparatory becomes accurate most rapidly are also the trials 

where the neural state becomes consistent most rapidly.  In summary, it is still quite unclear 

which explanation is correct, and it is quite plausible that both are at play. 

 



Supplementary note 3.  The central result of this study is that there is considerable trial-to-trial 

variability present before stimulus onset, and that this variability is diminished by stimulus onset.  

What is the timescale of this variability?  In particular, for anaesthetized animals, is the variability 

related to slow drift in anesthesia?  A slow drift in excitability would certainly create across-trial 

firing-rate variability.  However, it isn’t clear that an increase from this source would be limited 

to the pre-stimulus period; it would likely increase variability at all times.  Still once can imagine 

scenarios in which this might occur.  Thus, to examine whether slow drift could be a partial 

source of our effect, we recomputed the FF for the V1 data (from Figure 3), after splitting the 100 

trials/condition into 10-trial sets.  Thus, variability was being computed across a smaller set of 

trials, presented close to one another in time.  This did indeed result in slightly lower variability 

overall.  However, the stimulus-driven decline in variability was undiminished; the effect looked 

essentially identical to the original effect.  Virtually identical results were also obtained if we 

computed variability across subsets of 5 trials each.  Thus, while some slow drift is present 

(variability is slightly lower overall when computed locally) this appears to have little to do with 

the stimulus-driven decline in variability.



Supplementary video 1.  A movie version of Figure 7a.  Data are from PMd, and show the 

decline in across-trial variance after the onset of the stimulus (a reach target).  The movie spans 

750 ms, beginning 400 ms before stimulus onset and ending 350 ms after.  The movie ends before 

the go cue is given.  Each black dot shows the state of PMd on one trial.  Fifteen randomly-

chosen trials are shown.  Dots turn blue for a brief moment at the time of stimulus onset.   Note 

the subsequent drop in the variance of the dot locations (i.e., a drop in firing-rate variance).  This 

feature of the response is at least as clear as the change in mean dot location (i.e., the change in 

mean firing rates).  G20040123 dataset. 

 

Supplementary video 2.  Same as Supplementary video 1, but more time is shown and the 

trajectory of the RT-outlier trial is now included (red).  The movie spans ~1500 ms.  This time-

span differs slightly across trials, as they have different go-cue and movement-onset times.  At 

the time of the go cue, each dot turns green and further progress is halted.  Progress resumes once 

all trials have passed the time of their respective go cues.  This re-aligns the data to the go cue, 

much as is commonly done in PSTH’s.  Traces end at movement onset.  

 

Supplementary video 3.  Same as Supplementary video 1, but for the G20040122 PMd dataset 

(that shown in Figure 7c). 

 

Supplementary video 4. Supplementary video 2, but for the G20040122 PMd dataset (that shown 

in Figure 7c).    



 
Simulations 

The simulation (Supplementary figure 1 and Supplementary figure 5a,b) employed two 

units with activities that varied continuously from zero to one.  This network is merely meant to 

be illustrative: its details are not intended to model any real network.  The network’s two units 

form a winner-take-all network.  When receiving balanced inputs (initially zero) the network is 

unstable and intrinsic noise has a large effect on the network state.  When driven with an 

unbalanced input, the network settles to a state where one unit is more active.  In doing so, the 

network becomes more stable.  Network activity evolved according to,  

" d s(t) / dt = -s(t) + f( Ws(t) + b + d(t) + q(t) ) ,   

where " = 35 ms, W is a 2x2 anti-diagonal matrix with both entries = -0.7, b is a two-

dimensional bias vector with both entries = 0.7, d(t) is a two-dimensional input vector, and q(t) is 

two-dimensional Gaussian noise of standard deviation 0.22, independent at each time and for 

each neuron.  At the time of stimulus onset, d(t) stepped from [0 0] to [0.42 0.355].  f(x) is a 

sigmoidal transfer function: f(x) = (!/2 + atan(20*(x-0.5)))/!.  The zero to one range of s(t) was 

mapped to a ! from zero to 60 spikes/s.  These firing rates were converted to ‘recorded’ spike 

trains via an inhomogeneous Poisson process with rate !.   

To compute the red ellipses in Supplementary figure 5a, the mean ! on each trial was 

computed in a 200 ms measurement window which either ended at stimulus onset (Pre) or began 

400 ms after stimulus onset (Post), by which point network ‘settling’ had largely finished.  For 

Supplementary figure 5b, the spike count on each of 10,000 trials was drawn from a Poisson 

distribution, with mean equal to the ! on that trial (averaged over the measurement window) 

times the length of the measurement window.  The spike count was transformed back to a rate for 

plotting purposes. 

When applying Factor analysis (FA) to the simulated data, we simulated recordings from 

a 60 unit network in which half the units shared the underlying rate of neuron 1 and half shared 

the underlying rate of neuron 2.  Thus, the underlying network-level variance was strongly 

correlated across units (perfectly within a type).  Measured rates were computed using draws 

from a Poisson distribution that were independent for each unit.  This emulates the very weak 

spike-spike correlations typically observed for pairs of cortical neurons.  FA was applied to data 

for all simulated units.  Supplementary figure 5d then restricts subsequent analysis to the neuron-

2-like class. 
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