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Figure S1: Map of plasmid pNS2-σVL. This plasmid contains the synthetic circuit
shown in Fig. 3A of the text. Features include two fluorescent protein genes (cfp and
mCherry), the cI-yfp gene fusion, a low-copy SC101 origin of replication, kanamycin
resistance gene, and regulating promoters as indicated. In particular, PV N represents
the OR2∗ variant of the λ PR promoter.



Supplementary Note

Analytic Solutions for Cross Correlation Functions Due to

Noise

In this section we develop an analytic method for calculating arbitrary cross correla-
tion functions.

We consider the following system of equations

Ȧ = αA + E + IA − βA (1)

Ḃ =
αB

1 + (A/K)n
+ E + IB − βB (2)

Ċ = αC + E + IC − βC, (3)

where E represents extrinsic noise and Ii is intrinsic noise for i = {A, B, C}. The
noise sources have zero mean so the equilibrium point of the deterministic system
can be calculated as Aeq = αA/β, Beq = αB

β(1+(αA/(βK))n)
, and Ceq = αC/β. We expect

perturbations due to noise to be small, so it is valid to linearize the system about the
equilibrium point. Defining a = A − Aeq, b = B − Beq, and c = C − Ceq we obtain
the following set of linear dynamics

ȧ = E + IA − βa (4)

ḃ = ga + E + IB − βb (5)

ċ = E + IC − βc (6)

where g is the local sensitivity

g = −
αB n ( αA

βK
)n−1

K(1 + ( αA

βK
)n)2

.

If we assume that the mean value of A is in the center of the Hill function so Aeq =
K, as is the case with our simulated system, then this simplifies to g = −αBn

4K
.

This analysis is still possible regardless of the steady state value of A, but certain
regimes (the middle of the Hill function, saturated edges of the nonlinearity) are
better approximated by linear models. Note that the constant g is the only place
that information about the nonlinearity enters the equations.

The cross correlation theorem states that cross correlation in the time domain is
equal to multiplication in the frequency domain

Rf,g(τ) = F
−1[f̃ ∗

g̃],

where ∗ denotes the complex conjugate and f(t) and g(t) are the two signals. However,
we average over many cross correlation functions, so we need to calculate the expected
value of the cross correlation function over many realizations of the noise

E{Rf,g(τ)} = E{F−1[f̃ ∗
g̃]}. (7)
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Taking the Fourier transform of Eqns. (4)–(6) we find

ã =
1

β + iω
(Ẽ + ĨA) (8)

b̃ =
1

β + iω
(Ẽ + ĨB + gã) (9)

c̃ =
1

β + iω
(Ẽ + ĨC) (10)

Ẽ =
θ

β + iω
η̃E (11)

Ĩi =
λi

κ + iω
η̃i. (12)

Below, we calculate cross correlation expressions for two cases: two independent
genes (A and C in Fig. 2 of the main text) and a simple regulatory link with repression
(A and B). The first, and simpler, case is worked through in detail, while the results
of the second case are summarized.

Unregulated Case

We substitute Eqns. (8)–(12) into Eqn. (7), dropping tildes to simplify notation

E{Ra,c(τ)} = E{F−1[
1

β − iω
(

θ

β − iω
η
∗
E

+
λA

κ − iω
η
∗
a
)

1

β + iω
(

θ

β + iω
ηE +

λC

κ + iω
ηc)]}

= E{F−1[
1

β2 + ω2
(

θ2

β2 + ω2
η
∗
E
ηE +

θλC

(β − iω)(κ + iω)
η
∗
E
ηc

+
θλA

(β + iω)(κ − iω)
η
∗
a
ηE +

λAλC

β2 + ω2
η
∗
a
ηc)]}.

Because the Fourier transform is a linear operation we can analyze each of the
four terms individually. We use two features of white noise to simplify analysis.
First, white noise has a flat power spectral density η∗

i
(ω)ηi(ω) = Wi and second

E{ηi(t)ηj(t)} = 0 for i 6= j. Thus,

E{ηi(t)ηj(t)}i6=j = E{F−1[F [ηi(t)ηj(t)]]}
= E{F−1[η∗

i
(ω)ηj(ω)]}

= 0.

Therefore if we have a deterministic function G(ω)

E{F−1[G(ω)η∗
i
(ω)ηj(ω)]]}i6=j = E{ 1√

2π
F

−1[G(ω)] ⋆ F
−1[η∗

i
(ω)ηj(ω)]}

=
1√
2π

F
−1[G(ω)] ⋆ E{F−1[η∗

i
(ω)ηj(ω)]}

= 0,
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where ⋆ represents convolution. Due to these white noise properties the last three
terms in the cross correlation expression become zero and the remaining term simpli-
fies to

E{Ra,c(τ)} = F
−1[

1

β2 + ω2

θ2

β2 + ω2
WE].

Applying the inverse Fourier transform we find

E{Ra,c(τ)} =
1

2π

∫ ∞

−∞

1

β2 + ω2

θ2

β2 + ω2
WE e

−iωτ
dω.

This integral can be solved using Cauchy’s Residue theorem. Specifically, we need to
consider two cases: τ < 0 and τ ≥ 0. In the first case we can apply Jordan’s lemma
if we use a contour that encircles the upper half plane (Fig. T1a). Using Cauchy’s
Residue theorem we find

lim
R→∞

∫

CR

f(z)dz +

∫

R

−R

f(z)dz = 2πi

∑

Res.

By Jordan’s lemma the contour at infinity, CR, becomes zero and we are left with the
integral we want to evaluate. In our integral we have a second-order pole at z = iβ

and a second-order pole at z = −iβ. Since we are closing the contour in the upper
half plane we need to evaluate the residue at z = iβ:

1

2π

∫ ∞

−∞

1

β2 + ω2

θ2

β2 + ω2
WE e

−iωτ
dω =

1

2π
2πiRes(iβ)

=
θ2WE

4β3
e

βτ (1 − βτ).

For τ ≥ 0 we can use Jordan’s lemma if we choose a contour that encircles the
lower half plane (Fig. T1b). Since the direction of encirclement is now clockwise, the
residue theorem has an additional negative sign:

1

2π

∫ ∞

−∞

1

β2 + ω2

θ2

β2 + ω2
WE e

−iωτ
dω =

1

2π
(−2πiRes(−iβ))

=
θ2WE

4β3
e
−βτ (1 + βτ).

Combining these two results we find

E{Ra,c(τ)} =
θ2WE

4β3
e
−β|τ |(1 + β|τ |).

Note that this expression for the cross correlation used a and c, the mean sub-
tracted versions of A and C. These expressions are consistent with those calculated
directly from the nonlinear simulations because we used the mean subtracted version
of the cross correlation function.
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Figure T1: Contours used for evaluating Cauchy’s Residue theorem. Pole locations
shown are for the unregulated cross correlation expression.

Regulated Case

Analysis of the cross correlation function due to repression is similar. After simplifi-
cation using the white noise properties discussed in the previous section we find

E{Ra,b(τ)} = F
−1[

θ2 WE

(β + iω)2(β − iω)2
]

+ F
−1[

g θ
2

WE

(β + iω)3(β − iω)2
]

+ F
−1[

g λ2
A

WA

(β + iω)2(β − iω)(κ + iω)(κ − iω)
].

These three terms have a convenient interpretation: The first term is the artificial
correlation due to extrinsic noise, the second term is extrinsic noise that has propa-
gated through the link, the third term is intrinsic noise that has propagated through
the link. Cauchy’s Residue theorem and Jordan’s lemma are applied to find

Ra,b(τ) =



















































θ
2
WE

4β3 e
βτ (1 − βτ)

+ gθ2WE

16β4 eβτ (3 − 4βτ + 2β2τ 2)

+λ2
A
gWA(eβτ κ2(1−2βτ)−β2(5−2βτ)

4β2(β2−κ2)2
+ eκτ 1

2κ(β−κ)2(β+κ)
) τ < 0

θ2WE

4β3 e−βτ (1 + βτ)

+ gθ2WE

16β4 e−βτ (3 + 2βτ)

+λ
2
A
gWA( e−βτ

4β2(κ2−β2)
+ e−κτ

2κ(β+κ)2(β−κ)
) τ ≥ 0.
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Summary

The cross correlation relations are summarized as

E{RA,C(τ)} = NA,C

θ2WE

4β3
e
−β|τ |(1 + β|τ |)

E{RA,B(τ)} =































NA,B( θ
2

WE

16β4 eβτ (2gβ2τ 2 − 4β(g + β)τ + 3g + 4β)

+λ2
A
gWA(eβτ κ

2(1−2βτ)−β
2(5−2βτ)

4β2(κ2−β2)2
+ eκτ 1

2κ(β−κ)2(β+κ)
)) τ < 0

NA,B( θ2 WE

16β4 e−βτ (2β(g + 2β)τ + 3g + 4β)

+λ
2
A
gWA(e−βτ 1

4β2(κ2−β2)
+ e

−κτ 1
2κ(β+κ)2(β−κ)

)) τ ≥ 0

where the normalization factors are

NA,B =
1

√

RA,A(0)RB,B(0)

NA,C =
1

√

RA,A(0)RC,C(0)

RA,A(0) =
θ2WE

4β3
+

λ2
A
WA

2βκ(κ + β)

RB,B(0) =
θ2(3g2 + 6gβ + 4β2) WE

16β5
+

λ2
A
g2(κ + 2β) WA

4κβ3(κ + β)2
+

λ2
B

WB

2κβ(κ + β)

RC,C(0) =
θ2WE

4β3
+

λ2
C
WC

2βκ(κ + β)
.

To compare these results to the nonlinear simulation we use the constants specified
in Table T1, where g = −αBn

4K
. WE , Wi for i = {A, B, C} are treated as binary

variables and set to 0 or 1 to turn off and on extrinsic and intrinsic noise for comparison
to the full nonlinear simulations shown in the text. We assume WA = WB = WC for
simplicity. Fig. 2 in the text shows that the analytic solutions for cross correlations
match the simulated nonlinear system extremely well.

We have calculated the cross correlation functions for two types of regulation. This
method can be applied more generally to larger networks, provided perturbations due
to noise are small enough that linearization is a valid approximation.

Sensitivity Analysis

Two prominent features of the cross correlation curve for repression are the location
of the dip, τreg, and the magnitude of the dip, M (shown schematically in Fig. T2).
We calculate how sensitive these features are to variations in the system parameters.
These results indicate which parameters play a primary role in setting the features of
the cross correlation function.

To find τreg for repression we take

dRa,b(τ)

dτ

∣

∣

∣

τ=τreg

= 0.
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Parameter Value
αA 1.39 molecules/cell/min
αB 4.5 molecules/cell/min
αC 1.39 molecules/cell/min
β 0.0116 1/min
K 120 nM
n 1.7
κ 0.139 1/min
θ 0.0532 (molecules/cell)1/2/min
λA 0.621 (molecules/cell)1/2/min
λB 1.12 (molecules/cell)1/2/min
λC 0.621 (molecules/cell)1/2/min
Tcc 60 mins
Tint 5 mins

Table T1: Simulation Parameters

ττ

M

τreg

a b

Figure T2: Schematic of cross correlation function features (a) τreg and (b) M .
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In general it is not possible to find a closed form solution for τreg, however numerical
root finding methods can be applied. The nominal parameter values for sensitivity
analysis are those listed in Table T1. For a feature of the cross correlation function,
y, we find the normalized sensitivity

Si =
y(pi + ∆pi) − y(pi − ∆pi)

2 ∆pi y(pi)
.

For ∆pi = 0.05pi the parameteric sensitivities are shown in Table T2. Large values
indicate that the feature y is very sensitive to that parameter. The sign of the
sensitivity indicates whether y will get larger (Si > 0) or smaller (Si < 0) as the
parameter is increased.

Parameter τreg M

β -108.5 2.39
g 18.9 -85.7
θ 11.3 5.5
κ 4.0 -12.4
λA -0.9 2.5
λB 0.0 0.0
λC 0.0 0.0

Table T2: Normalized Sensitivities

τreg is most sensitive to the parameter β, which sets the time scale of both protein
decay and extrinsic noise. As the cell cycle (log(2)/β) gets longer, the location of
the dip moves further away from zero. M is most sensitive to the local sensitivity g,
which is negative for repression. As g becomes less negative, the repressor has less
of an effect on its target and the dip gets smaller. In the extreme case when g = 0,
which indicates an inactive or non-existent regulatory connection, the dip disappears.

Degenerate Cross Correlation Functions

Different regulatory networks can generate similar cross correlation functions. This
property is referred to as the “degeneracy” of the cross correlation function, and
can interfere with attempts to use the cross correlation function to uniquely identify
unknown regulatory architectures. Here we explore how degeneracy appears and ways
in which its limits may be partially circumvented.

Redundant Network Elements

The problem is shown clearly with the network diagram in Fig. T3. Here we as-
sume that regulatory parameters are identical for all the links (except for the sign
of regulation, repression vs. activation). Proteins B and C are redundant because
they are controlled by the same input, A, and extrinsic noise affects them in the
same way. Thus, in the extreme case where only extrinsic noise is present, B(t) and
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C(t) will be identical. Consequently, the cross correlations of each with D are equal,
RB,D(τ) = RC,D(τ), even though there is no link between B and D.

A

D

CB

Figure T3: Network with redundant components. Cross correlation functions RB,D(τ)
and RC,D(τ) may look similar.

Intrinsic noise helps to discriminate between RB,D(τ) and RC,D(τ) because intrin-
sic noise in C propagates to D causing additional time-lagged correlation. Intrinsic
noise in B, on the other hand, does not propagate to affect D. Thus, one obtains an
additional time-lagged component in RC,D(τ) compared to RB,D(τ).

More specifically, analytic solutions for the two cross correlation functions are
summarized by

RB,D(τ) = E{F−1[f ∗
Be

fDe + f
∗
BA

fDA]}
RC,D(τ) = E{F−1[f ∗

Ce
fDe + f

∗
CA

fDA + f
∗
CC

fDC ]},

where fi,j is the Fourier transform of the differential equations describing the dynamics
of protein j in response to noise from i, ∗ is the complex conjugate, e is extrinsic noise,
and E refers to the expected value. Assuming the network connections are identical
for A-B and A-C we find the difference between the two cross correlations

RC,D(τ) − RB,D(τ) = E{F−1[f ∗
CC

fDC ]}.

This term represents propagation of noise in C to affect D. It is non-zero due to
intrinsic noise in C.

Fig. T4 compares RB,D(τ) and RC,D(τ). RC,D(τ) is lower because intrinsic noise
in C propagates through the repression link. The difference increases when intrinsic
noise in C gets larger.

This simple example illustrates how redundant network elements can confound
analysis. More complicated networks will have similar problems any time there are
two or more network elements that are controlled by the same inputs. Intrinsic noise
or other signals that affect individual genes can help to distinguish correlations due
to regulation from correlations due to symmetric network elements.

This degeneracy arises due to the effective redundancy of two genes, B and C,
which are regulated identically and have similar function. In practice, such redun-
dancy may be unusual. For example, in the case of the galactose network considered
in the text, GalR and GalS have similar function, and even similar binding sites.
However, GalS and not GalR, is regulated by CRP. Thus, the two genes are not
redundant.
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Figure T4: Cross correlation functions for network with redundant elements.

Parametric Degeneracies

A second class of degeneracies comes from uncertainty in parameters. Consider the
two cascades in Fig. T5. If we measure RA,C(τ) is it possible to determine that
there is a middle element in the network or will the cross correlation function be
indistinguishable from that of RX,Y (τ) in certain cases? In this example extrinsic

A

C

B

X

Y

Ext. noise

Ext. noise

Figure T5: Example of a network showing parametric degeneracy. Gray arrows show
how extrinsic noise affects the system.

noise is helpful in discriminating between the two cascades. In the two-step cascade,
extrinsic noise affects A, B, and C, and thus enters into the cross correlation function
in three ways, while in the one-step cascade it only enters twice.

Without extrinsic noise it is possible to adjust parameters to make the two cross
correlation functions look nearly identical (Fig. T6a). For example, if B degrades
quickly, but the net strength of the two networks are the same then the resulting
cross correlation functions are very similar. When extrinsic noise is considered, the
two cross correlations separate (Fig. T6b). Extrinsic noise increases overall positive
correlation near τ = 0 for both cascades, but the effect is more pronounced in the
longer cascade. Additionally, extrinsic noise increases the the effective regulatory
timescale of repression in the longer cascade, shown by the location of the dip at
τ < 0.
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Figure T6: Cross correlation functions for two cascades with degenerate parameters.
(a) No extrinsic noise, WE = 0. (b) Extrinsic and intrinsic noise. Simulation param-
eters are βx = βy = βa = βc = 1/60 mins−1, βb = 1/5 mins−1, gxy = gabgbc = −0.01,
Wi = 1, WE = 0.064.

In this example the intrinsic noise-only dynamics are described by

ȧ = −βaa + ηa

ḃ = −βbb + ηb + gaba

ċ = −βcc + ηc + gbcb

ẋ = −βxx + ηx

ẏ = −βyy + ηy + gxyx

where intrinsic noise has been approximated by white noise and parameters are given
in the figure caption.

Since biochemical parameters are often unknown or uncertain there are many
possible situations where the shape of two cross correlation functions may look very
similar, but knowledge of noise and network properties can help to clarify cross cor-
relations, as described here.
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