nature cell biology

Figure S1 Reduced levels of TRiC increases polyglutamine-expanded huntingtin aggregation in budding yeast. (a) TRiC haploinsufficiency enhances aggregation: On-GFP (n = 25, 103) was expressed in wildtype (WT) or TRiC haploinsufficient mutant strain (*CCT4lcct4A*) yeast as described in methods. Yeast cells were scored for foci by visual inspection of GFP aggregates. Statistical analysis was performed using the one-sided, paired Student's *t*-test: Means + SE of five independent experiments of at least 200 cells each are shown. (b) TRiC depletion enhances aggregation: TRiC was depleted by glucose-mediated transcriptional repression of subunit CCT4 expressed in either *cct4A* or wild-type (WT) cells. Q103-GFP expression was induced at t = 0 hr with 200 μ M CuSO₄ for 24 hrs concomitantly with CCT4 repression by growth at 30 °C in liquid media containing 2% glucose. Yeast cells were scored for foci by visual inspection of GFP aggregates at the indicated times post-chase. Broken line, wild-type; Solid line, *cct4* Δ deletion. Statistical analysis was performed using the one-sided, paired Student's *t*-test: Means +/- SE of three independent experiments with at least 200 cells each are shown (**p < 0.01). (c) Depletion of CCT4-HA was assessed by anti-HA immunoblot at 0, 8 and 12 hrs post-chase, grown at 30 °C in liquid media containing either 2% glucose (non-inducing) or 2% galactose (inducing).

SUPPLEMENTARY INFORMATION

. .

.

.

. .

40 X

7

Figure S2 TRiC subunits are soluble upon overexpression and do not adversely affect cell viability. **(a)** HA-tagged TRiC subunits, CCT1 thru CCT8, under galactose control, or Ssa1/Ssb2 under copper control, were overexpressed for 24 hrs in wild-type (WT) yeast cells as described in methods. Lysates were prepared and equivalent total protein amounts were analyzed by anti-HA immunoblot. C: Endogenous CCT1-HA levels, from lysates containing a chromosomally tagged CCT1 subunit (see below). Yeast expressing HA-tagged TRiC subunits were lysed and clarified by centrifugation at 30,000xg. Supernatants were analyzed by immunoblot against the HA-tag. To assess the level of overexpression over endogenous levels, control cells carrying a chromosomally tagged version of CCT1-HA were analyzed in parallel (lane C, contains a ten-fold excess in total lysate protein compared to lanes 1-8). Lane (-): Uninduced control for CCT5-HA cells, no galactose addition. (b) Overexpression of individual TRiC subunits does not affect growth. Viability was assessed by 10-fold serial dilutions onto glucose (non-inducing) or galactose (inducing) plates.

Figure S3 Biochemical analysis of overexpressed chaperonin subunits. (a) Overexpression of chaperonin subunits does not affect endogenous levels of the TRiC complex. HA-tagged TRiC subunits, CCT1 and CCT7, under galactose control, were overexpressed for 24 hrs in wild-type (WT) yeast cells as described in methods. (i) Native lysates were prepared and equivalent total protein amounts were analyzed by native gel. The TRiC complex, migrating with a characteristic mobility, was detected followed by immunoblot with antibodies against the endogenous TRiC subunits (anti-CCT3/5/6/8). A control lysate corresponding to the vector control was also analyzed. *(ii)* The same lysates were also analyzed by SDS-PAGE followed by anti-HA immunoblot to detect the overexpressed subunit. **(b)** Gel filtration analysis of lysates from cells overexpressing CCT1. Lysates from cells overexpressing cells overexpressed the provide the cells overexpression cells overexpressed cells overexpressed cells overexpression cells overexpressi

SUPPLEMENTARY INFORMATION

 30°C
 37°C

 WT
 V

 V
 V

 V
 V

 1
 V

 3
 V

Figure S4 Specific TRiC/CCT subunits modulate polyglutamine-expanded huntingtin aggregate morphology, without TRiC functional complementation. (a) Q103-GFP and individual TRiC subunits (CCTx; x = 1, 3) were co-overexpressed in TRiC mutant (*cct4-1*) cells for 24 hrs as described in methods. Q103-GFP aggregate morphology was assessed by visual inspection of GFP aggregates. Statistical analysis was performed using

b

the one-sided, paired Student's *t*-test: Means + SE of three independent experiments counting at least 200 cells each are shown (*p < 0.05). (b) Overexpression of individual TRiC subunits does not rescue TRiC mutant (*cct4-1*) temperature-sensitivity. Viability was assessed by 10-fold serial dilutions onto galactose (inducing) plates at permissive (30°C) or non-permissive (37°C) temperatures.

References and Notes

- 1. Camasses, A., Bogdanova, A., Shevchenko, A. & Zachariae, W. The CCT chaperonin promotes activation of the anaphase-promoting complex through the generation of functional Cdc20. *Mol Cell* **12**, 87-100 (2003).
- 2. Deutschbauer, A. M. et al. Mechanisms of haploinsufficiency revealed by genome-wide profiling in yeast. Genetics 169, 1915-25 (2005).

SUPPLEMENTARY INFORMATION

Figure S5 Tam et al.

Figure S5 Expanded blots from selected figures.

NCB-F09632 - Supporting Online Material

SUPPORTING TABLE

 Table S1 Genotypes of strains used in study.

Yeast Strain	Genotype	Source
W303	ade2-1 trp1-1 can1-100 leu2-3, 112 his3-11, 15 ura3 CCT4	1
cct4-1	ade2-1 trp1-1 can1-100 leu2-3, 112 his3-11, 15 ura3 cct4-1	1
RDY 49	his3∆1/ his3∆1 leu2∆0/ leu2∆0 lys2∆0 leu2∆0 ura3∆0/ ura3∆0 CCT4/CCT4	2
RDY 56	his3Δ1/ his3Δ1 leu2Δ0/ leu2Δ0 lys2Δ0 leu2Δ0 ura3Δ0/ ura3Δ0 CCT4/cct4Δ::KAN	2
CCT4 (WT)	his3⊿1 leu2⊿0 lys2⊿0 leu2⊿0 ura3⊿0 kanMX4 CCT4-HA-pESC-URA	This study
CCT4(<i>cct4∆</i>)	his3∆1 leu2∆0 lys2∆0 leu2∆0 ura3∆0 cct4∆:kanMX4 CCT4-HA-pESC-URA	This study