## **Supporting Information**

## Synthesis, magnetic characterization and sensing applications of novel dextrancoated iron oxide nanorods

Sudip Nath<sup>†</sup>, Charalambos Kaittanis<sup> $\dagger$ , §</sup>, Vasanth Ramachandran<sup>#</sup>, Naresh Dalal<sup>#</sup>,

J. Manuel Perez\*<sup>\*,†,§,‡</sup>

† Nanoscience Technology Center, § Burnett School of Biomedical Sciences – College of Medicine, and

‡ Department of Chemistry, University of Central Florida, Orlando, FL 32826,

# Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Fl

32306

jmperez@mail.ucf.edu

Supplemental Figure 1: Photograph of DIONrods suspension stored at 4 °C.



**Supplemental Figure 2**: DLS of the Amersham (a) and Sigma (b) 10-K dextrans, indicating that the Amersham polymer has a narrower distribution, whereas the Fischer polymer has a significant population (13%) with larger diameters. TEM images of dextran-coated iron oxide nanoparticles synthesized with 10-K dextran from either Amersham (c) or Sigma (d).

**(a) (b)** 20 20-**Distribution (%)** Distribution (%) 15 15 10 10 5 5 الالالير 0 0 10<sup>2</sup> 10<sup>3</sup> 10<sup>-1</sup> 10<sup>0</sup> 10<sup>2</sup> 10<sup>3</sup> 10<sup>4</sup> 10<sup>1</sup> **10**<sup>-1</sup> 10<sup>°</sup> **10**<sup>4</sup> 10<sup>1</sup> Diameter (nm) **Diameter (nm)** (c) (d)

**Supplemental Figure 3**: Kinetics of peroxidase activity of DION particles made from the Sigma 10-K dextran, having TMB as a substrate.

