Supplementary figure/table and legends

Supplementary Figure 1

Genes	Primers	Fragment (bp)	Location*	Accession #
mRARβ	5'-aatcctgggagttggtgatg- 3' 5'-cggagcagctcacttcctac- 3'	145	7-152	X56573
hRARβ	5'-aatcctgggagttggtgatg- 3' 5'-gaagtgagctgttcagaggc- 3'	149	730-879	X56849
hp21 ^{CIP1}	5'-gcaaatgtttcaggcacaga- 3' 5'-ccctcatttgcagatggttt- 3'	178	3343-3521	U24170

^{*} Sequence location 1 refers to the first base pair of the published sequence in National Cancer for Biotechnology Information (NCBI) database.

Supplementary Table 1

The legends of the supplementary figure/table

S-Fig. 1. RAR α S77A resists phosphorylation by CAK and decreased RAR α S77 phosphorylation is a downstream event of decreased CAK activity. A, $RAR\alpha$ S77A (S77A) or $RAR\alpha$ cDNA was cloned into the lentiviral vector. B, Transduction efficiency of S77A and $RAR\alpha$ in HL60R cells was > 90%. C, CAK complexes immunuprecipitated from F9 cells were incubated with GST-RAR α or GST-S77A in an *in vitro* kinase reaction in the presence of unlabeled ATP. The reaction mixtures were then subjected to WB analysis using anti-RAR α and anti-serine antibodies as indicated. D, Transduction efficiency of S77A or $RAR\alpha$ in F9 RAR α -/cells was > 90%. E, WB depiction of S77A and RAR α levels in transduced F9 RAR α -/- cells by using anti-RAR α antibodies. F, FACS analysis of cell cycle profile of F9 RAR α -/- cells expressing S77A or RAR α .

S-Table 1. Primers used for PCR amplification in ChIP assays.