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Abstract. Three simple models are discussed which show cooperative effects
in the steady-state transport of neutral molecules across a membrane. The
Bragg-Williams approximation is employed, and its limitations discussed. In
this approximation to cooperative problems, the diagram method for the calcu-
lation of steady-state probabilities and fluxes can still be used. This paper is
closely related to one by Blumenthal, Changeux, and Lefever, and provides the
foundation for sequels on an oscillatory steady-state phase-transition model
(part II) and on simple models possibly related to steady-state potassium ion
transport across a nerve membrane (part III).

Introduction. In this paper and its sequels (parts II and III), we give a pre-
liminary report on work in progress in the general area of cooperative effects in
steady-state transport across membranes. Although we have been interested
in this subject for some time,'~* the immediate stimulus for the present work
came from the very interesting paper by Blumenthal, Changeux, and Lefever.s
The excellent and closely related work by Adam® should also be mentioned.

Asin reference 5, the present paper (part I) is confined to models for the trans-
port of neutral molecules. In part III, consider the transport of ions, and
membrane potential (electric field) effects. Our very limited objective in part
III is to find simple models which can generate curves with the well-known’: 8
form of those found experimentally in steady-state potassium ion transport across
a nerve (squid) membrane, in the special case of high external potassium ion
concentration. Whether these models are in fact related to actual ionic transport
mechanisms remains to be seen.

Part I provides the necessary background for parts II and III, and establishes
the connection with Blumenthal, Changeux, and Lefever.’ In part II, we dis-
cuss a rather different type of model which shows oscillatory behavior at steady
state.

Blumenthal-Changeux-Lefever Model. The diagram method® and our
previous work! provide an easy derivation of the main equations of Blumenthal,
Changeux, and Lefever. This model is concerned with the transport of neutral
molecules (0) between two baths (4 and B), across a symmetrical membrane
which consists of M identical units. Each unit (protein molecule plus lipid) can
be either in conformation I or II. There is no interaction between neutral
molecules and a unit in conformation I, but a unit in conformation IT can bind and
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transport neutral molecules (0) via the four states shown in Figure 1a: each unit
of type II has two equivalent binding sites for 0, one accessible to each bath.
The transition probabilities (rate constants) between all states are introduced in
Figure 1b. The rate constants for binding, a4 and ap, are proportional to the
respective bath concentrations of 0. The equilibrium case is a4 = a3.
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F1a. 1.—States and transition probabilities for the Blumenthal-
Changeux-Lefever model.

The cooperative effects we are interested in arise from interactions between
neighboring units and depend on the conformation of these units. However, we
omit these interactions temporarily. In the absence of interactions, the M
units act independently of one another.

This model, without conformation I, was investigated for another purpose in
reference 10. The steady-state probabilities of the different states follow
directly from equations (3) of reference 10 by appropriate® introduction of 7
and 9’:

= 9'8%(4x + 28 + aa + a8)/Z,
P2 = 18°(4x + 28 + aa + a@8)/Z,
poe = 18[2k(aa + a) + aalaa + as + 28)1/2,
P20 = 18[2k(aa + aB) + as(aa + as + 28)]/Z,

€Y

and

P20 = n[(ea + a)% + arap(aa + as + 28)1/2,
where

2 = n(as + as + 28)[(aa + B)(as + B) + k(aa + as + 268)] +
7'82(4k + 28 + aa + as). (2)

Let P; be the total probability of conformation II. Then
P,/(1 — P,)

(p2 + P2 + D20 + Pozo)/ D1
_ [(aa/B) + 1][(es/B) + 1]+ (x/B)[(2a/B) + (ap/B) + 2]
(' /)L + {4(/B)/[(an/B) + (a8/B) + 21})

@)
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The net steady-state flux of 0 molecules from bath A to bath B is
J = MK(pog - pgo)
or

J Py[(as/B) — (ap/B)]

M~ [(aa/B) + 11[(as/B) + 11+ (/8 [(aa/B) + (au/B) + 2]

Note that n’/9 enters the expression for J only through P,.

We now wish to introduce interactions between units. Suppose, for example,
that units of type I fit well together in a two-dimensional lattice, as do those of
type II, but that a I does not fit well in a II lattice, and vice versa. The problem
is then very much more complicated, even at equilibrium,!! because the units
are no longer independent of each other. In fact, the entire system has to be
considered a single ‘“unit”’ in an exact treatment. However, it is the essence of
the so-called Bragg-Williams approximation,!* to count interactions as if the
units were independent. Therefore, if we are willing to use this rather rough
approximation, we can include interactions between units and still use the dia-
gram method (which assumes independent units) to obtain steady-state proper-
ties. One simply has to include interaction factors in appropriate transition
probabilities in such a way as to be consistent with the Bragg-Williams approxi-
mation at equilibrium. Hence, in this approximation, equations (3) and (4)
would still apply without formal change. We shall discuss further, below, the
implications of the Bragg-Williams method, but proceed now to use it.

At equilibrium, if there were no interactions between units, the grand partition
function per unit would be

£= Q1+ @ + Qo + QN + Quo)?

4)

= Q1 + Q:»1 + gV?, ®)
where X = ¢**7, 4 = chemical potential of 0, and
Qn = Qu, q = Qur/Qs, Qoo = Q. (6)

The absolute activity A is proportional to concentration, in a dilute solution.
Then, since p:*/p* = @Q1/Q: and p®n = p.°n’ (detailed balance), where ¢ =
equilibrium, we must have @,/Q: = 7'/n for self-consistency. Similarly, we
find g\ = /B (at steady state, aa/B = g\a and as/B = g\p).

We now include nearest neighbor interactions, in the Bragg-Williams approx-
imation. Let wy be the interaction energy between a nearest neighbor I-II
pair, etc. We assume for simplicity that binding of the relatively small 0
molecule does not influence these interactions. Let ¢ be the nearest neighbor
number in the lattice (e.g., ¢ = 6 in a close-packed lattice). Then, for given
P, = 1 — P, any particular unit has, on the average, cP; and cP; neighboring
units of the two types. Therefore, equation (5) becomes!?

£= Qlau-P‘am-P’ + Qzazz_P’am—Pl(l + qN?, (M)

where ay; = /%7 ete. We still have a/8 = g\, but now
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=P =P
77_: _ Qian “ay, -0 1-2P, 8)
n h Qzan-P’am—P' - v ’ (
where
_ Qray 12 Q= a2  —cw/%kT
o Q2a22_”2, o Gt/ 2ay 12 h ’
= Wn + W — 2’6012. (9)

The value of @ (an “equilibrium constant’”’) indicates the relative thermo-
dynamié¢ stability, per unit, of an all-I lattice and an all-II lattice. Coopera-
tivity occurs when w < 0 or @ > 1; as mentioned above, an example would be
when a unit of type I is a “misfit” in a II lattice, and vice versa.

At equilibrium, from either equation (3) or (7), we have

PP/ (1 — Py) = (1 4+ q0)%/Q. (10)
At steady state, using equations (3) and (8),

P [(an/B) + l(en/B) + 1] + (</B)[(an/B) + (an/8) + 2] 1)
1—P, QL + {4(x/8)/[(aa/B) + (an/B8) + 2]})

If the right-hand side of either equation (10) or (11) is denoted by y, then P, — 1/,
is an odd function of In y, with an inflection point at P, = !/,, y = 1. This
function is illustrated elsewhere.!* The critical value of w is cw/kT = —4, or
a = e

We note that » and #” occur in equation (3) only as the (thermodynamic) ratio
n’/n. Hence, it is not necessary for present purposes to decide (on kinetic
grounds) how to “split” Qa'*"* between 7 and 7’.

Equations (11) and (4) are essentially the same as equations (2.3) and (2.5),
respectively, of reference 5. The correspondences between the two notations
are:

P2‘_’(7‘>)aA/ﬂ(_)a:aB/BHByK/BHG)a_zHAyaQHL (12)

Figures 2 and 3 illustrate equations (4) and (11), in the physically important
special case 8 > «. Blumenthal, Changeux, and Lefever give a number of
additional curves. In these figures, ap/8 is held constant and ax/B8 varied,
starting on the left from aa/8 = 0. Although the resemblance to the experi-
mental potassium flux curves referred to above is striking and suggestive, the
analogy cannot be pushed very far because: (1) the abscissa in the figures is a
concentration difference and not a membrane potential (as in the experiments);
(2) the molecule being transported is not an ion; and (3) there is only one ‘“transi-
tion”’ in the figures, whereas the experiments show a second (reverse) transition
in the region of positive flux. All three of these shortcomings are removed in
part III, incidentally.

The physical interpretation of Figures 2 and 3 is straightforward: when
aa/B is small, conformation I (which is impermeable to 0) is more stable than II;
an increase in aa/B, however, shifts this relative stability to favor IT (because of
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an increase in relative population of °II, II° and °II°); with a sufficiently nega-~
tive value of cw/kT, the transition from small P, to large P; is rather sudden,;
since conformation II can transport 0 molecules, there is a concomitant increase
in |J].

The dashed line in Figures 2 and 3 shows how the flux would behave if P,
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Fia. 2.—Cooperative effect on the flux when ap/8 = 2: (a) Blumenthal-
Changeux-Lefever (BCL) model; (b) model in Fig. 4a. Q chosen (arbitrarily)
to give P; = 1/, when as = agp/2. Dashed curve (BCL) is flux for P, =
constant (see text).
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F1a. 3.—Cooperative effect on the flux when az/8 = 8: (a) Blumenthal-
Changeux-Lefever (BCL) model! (b) model in Fig. 4a. Q chosen (arbi-
trarily) to give Py = /5, when a4 = ap/2. Dashed curve (BCL) is flux
for P; = constant (see text).
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remained constant at its as/8 = 0 value. It is thus clear that there are two
effects working in opposite directions, as aa/g increases: (1) the flux per unit of
type II decreases in absolute value (dashed line); but (2) the number of units of
type Il increases even faster (in these examples).

The equilibrium equation (10) shows very clearly the influence of binding 0
molecules on I-II relative stability. If @ > 1, type I is favored (P, < 1/,),
when A = 0 (y = 1/Q < 1). But, on increasing \, P; increases: P; = !/, when
y =1; and P, > !/, fory > 1. Thus, type II will always predominate, for any
Q, if \ is sufficiently large.

We do not show any ‘“phase transition” curves (a > €?) in Figures 2 and 3
because: (1) the experimental potassium flux curves are ‘“‘subcritical”’ (i.e., they
suggest cooperativity, but not to the extent of a sharp transition); and (2) the
Bragg-Williams approximation (in the above form) is inadequate, even qualita-
tively, if there is an actual transition (see below).

Simplifications of the Blumenthal-Changeux-Lefever Model. The model
can be simplified (see Figs. 4a and 4b) without alteration of the qualitative be-

/ /

K N " Fie. 4.—(a) (b) Simplifica-
tions of the model in Fig. 1b
which have the same quali-
tative properties. (c) Gen-
eralization of (b) which is
used in part III. Line =
pair of arrows.

havior discussed above. In Figure 4a, only one molecule of 0 can be bound on a
type II unit, although there are still two sites;!* in Figure 4b, there is only one
(symmetrically placed) site.

In the former case (Fig. 4a), application of the diagram method?® leads to the
following steady-state properties:

m = 782 + B)/Z,
D = ’76(2" + ﬁ)/27

P = n[k(aa + as) + aaBl/Z, (13)
pn = nk(ea + ap) + asBl/2,
= (2 + B)[1(aa + a8 + B) + 28], (14)
Pa'?P/(1 — Po) = [(aa/B) + (aB/B) + 11/Q, (15)
and
J Py[(aa/B) — (as/B)]

Me = T+ 2/8) 11 (an/B) + (an/B) + 1] (16)

Note that P; does not depend on «.
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In the latter case (Fig. 4b),

»o= 29"8/Z, po = 20B/Z, pr = n(aa + ap)/Z, 17)

2 = n(aa + as + 28) + 29’8, (18)

P’/ — Py) = [(aa/B) + (an/B) + 21/2€Q, (19)

and J/MB = P;[(as/B) — (an/B)]/[(«a/B) + (an/B) + 2]. (20)

It is apparent that the P; and J curves will have the same appearance in these
two cases, except for scale factors in a/8 and J. Equations (15) and (16) are
illustrated in Figures 2 and 3.

Because of the simplicity of equations (17) to (20), it is easy to treat the
generalization of Figure 4b—4c. This is done in part III, including membrane
potential effects. In fact, this generalization proves to be essential in order to
duplicate the appearance of experimental curves (flux vs. membrane potential).

Comments on the Bragg-Williams Approximation. There is a logical in-
consistency in the way we introduced the Bragg-Williams approximation into
the grand partition function of a unit in equation (7) and into »’/5, and hence
the kinetics, in equation (8). That is, the Bragg-Williams factors are appropriate
for a closed system, but the present system is an open one (not only with respect
to 0, but more especially in that N = P,M, the number of type II units, can
fluctuate). This distinction is inconsequential, however, except in the neighbor-
hood of a phase transition.

The Bragg-Williams approximation in an open equilibrium system has been
discussed in detail elsewhere.!5 ¢ Also pertinent is the stochastic treatment of a
simple steady-state system,' since the kinetics of the complete probability
distribution in N,P(N), must be considered at a phase transition, not simply the
mean value N.

Because the steady-state equations (15) and (19) are also appropriate for a
system in equilibrium with an average bath, we may surmise with some confi-
dence that the steady-state distribution P(XN), in these two cases, has the equi-
librium form.” We can make the same assumption with respect to equation
(11), but with somewhat less assurance.’®* Then if we denote the right-hand
side of any of these three equations by y, we havels. 16

P(N) = const X MlyNe!N—M/DV/M /Ny (A — NI (21)
M
N(y) =NZ_30NP(N), Py(y) = N(y)/M. (22)

Unlike Py(y) in equations (11), (15), and (19), P.(y) does not exhibit!s: 16 g
“loop’” when a > e? (phase transition). If M is very large, P, shows an abrupt
jump aty = 1; if M is of the order of several hundred or less, there is appreciable
rounding off of the discontinuity.

The above paragraph describes the stable steady-state behavior of an open
system (averaging over a very long period of time). In a real experiment, how-
ever, one is likely to encounter metastability [the system is confined to one of the
two peaks in P(N)] which persists until nucleation of the stable phase occurs.
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In this case, the metastable parts of the Bragg-Williams loop are to be used.
However, the unstable part of the Bragg-Williams loop has no similar validity—
it is merely the locus of the minimum in P(N) between two peaks.1s: 16

Incidentally, nucleation® cannot be investigated within the framework of the
Bragg-Williams approximation alone because it is implicit in this approximation
that, for any N, there is a uniform density, N/M, throughout the entire system.

All of the flux equations, above, have the form J = flux per type II unit X
P,M. In the open system modification just discussed, we merely replace P
by P 2.

A practical exact approach to the cooperative problems in this series, including
metastability and nucleation, is by computer simulation* on a small system with
periodic boundary conditions. We have initiated work of this kind, especially
on the oscillatory phase transition problem discussed in part II.

We are very much indebted to Professor Max Delbriick for bringing the Blumenthal,
Changeux, and Lefever paper to our attention, and for a valuable discussion.

* Supported in part by research grants from the General Medical Sciences Institute of the
U.S. Public Health Service and the National Science Foundation.
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