Supporting Information

Enantioselective Carbonyl Allylation, Crotylation and *tert*-Prenylation of Furan Methanols and Furfurals *via* Iridium Catalyzed Transfer Hydrogenation

Benjamin Bechem, a,b Ryan L. Patman, Stephen Hashmia* and Michael J. Krische*

^aOrganisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany ^bUniversity of Texas at Austin Department of Chemistry and Biochemistry Austin, TX 78712, USA

E-mail: hashmi@hashmi.de, mkrische@mail.utexas.edu

Table of Contents

General Experimental Details	2
General Experimental Procedures	3
Experimental Procedure for the Preparation of Iridium Complex (R)-I	5
Experimental Procedure for the Preparation of Alcohol 1c	6
Detailed Experimental Procedures and Spectroscopic Data for Adducts 3a-3c	8
Detailed Experimental Procedures and Spectroscopic Data for Adducts 4a-4c	17
Detailed Experimental Procedures and Spectroscopic Data for Adducts 5a-5c	26
Detailed Experimental Procedures and Spectroscopic Data for Products 6a-6c	35

General Experimental Details. All reactions were run under an atmosphere of argon. unless otherwise indicated. Anhydrous solvents were transferred *via* oven-dried syringe. Reaction tubes were flame-dried and cooled under a stream of argon. Commercially available metal salts, ligands and alcohols were used as received. Commercially available aldehydes were purified via distillation or recrystallization prior to use. Reactions were monitored by thin-layer chromatography and products were visualized with anisaldehyde stain. Analytical thin-layer chromatography (TLC) was carried out using 0.2-mm commercial silica gel plates. Preparative column chromatography employing silica gel was performed according to the method of Still. Solvents for chromatography are listed as volume/volume ratios. High-resolution mass spectra (HRMS) are reported as m/z (relative intensity). Accurate masses are reported for the molecular ion [M+H]⁺ or a suitable fragment ion. Proton nuclear magnetic resonance (¹H NMR) spectra were recorded with on a 400 MHz spectrometer. Chemical shifts are reported in delta (δ) units. parts per million (ppm) relative to residual CHCl₃ at 7.24 ppm. Coupling constants are reported in Hertz (Hz). Carbon-13 nuclear magnetic resonance (¹³C NMR) spectra were recorded on a 100 MHz spectrometer. Chemical shifts are reported in delta (δ) units, ppm relative to the center of the triplet at 77.0 ppm for deuteriochloroform. ¹³C NMR spectra were routinely run with broadband decoupling. Compound numbers used in the experimental section correspond to those employed in the main paper.

-

¹ W. C. Still, M. Kahn, A. Mitra, J. Org. Chem. 1978, 43, 2923-2925.

General Experimental Procedures for Adducts 3a-3c

General Procedure A for the Preparation of Adducts 3a-3c from Furan Methanols 1a-1c: To a flame dried re-sealable reaction tube purged with argon and containing a magnetic stirrer, was added [Ir(cod)Cl]₂ (6.7 mg, 0.010 mmol, 2.5 mol%), (*R*)-Cl,MeO-BIPHEP (13.0 mg, 0.020 mmol, 5 mol%), 3-nitro-4-chlorobenzoic acid (8.1 mg, 0.040 mmol 10 mol%), Cs₂CO₃ (26.1 mg, 0.080 mmol, 20 mol%) and the furan methanol (0.40 mmol, 100 mol%). THF (2.0 mL, 0.2 M concentration with respect to the furan methanol) and allyl acetate (86 μL, 0.80 mmol, 200 mol%) were added and the reaction mixture was allowed to stir at 100 °C for 24 hours. The reaction mixture was concentrated *in vacuo* and purified by flash column chromatography (SiO₂) to furnish the corresponding products of allylation 3a-3c.

General Procedure B for the Preparation of Adducts 3a-3c from Furfurals 2a-2c: To a flame dried re-sealable reaction tube purged with argon and containing a magnetic stirrer, was added [Ir(cod)Cl]₂ (6.7 mg, 0.010 mmol, 2.5 mol%), (R)-Cl,MeO-BIPHEP (13.0 mg, 0.020 mmol, 5 mol%), 3-nitro-4-chlorobenzoic acid (8.1 mg, 0.040 mmol 10 mol%), Cs₂CO₃ (26.1 mg, 0.080 mmol, 20 mol%) and the furfural (0.40 mmol, 100 mol%). THF (2.0 mL, 0.2 M concentration with respect to the furfural), i-PrOH (61 μL, 0.80 mmol, 200 mol%) and allyl acetate (86 μL, 0.80 mmol, 200 mol%) were added and the reaction mixture was allowed to stir at 100 °C for 24 hours. The reaction mixture was concentrated $in \ vacuo$ and purified by flash column chromatography (SiO₂) to furnish the corresponding products of allylation **3a-3c**.

General Experimental Procedures for Adducts 4a-4c

General Procedure C for the Preparation of Adducts 4a-4c from Furan Methanols 1a-1c: To a flame dried re-sealable reaction tube purged with argon and containing a magnetic stirrer, was added (R)-Ir-complex I (20.4 mg, 0.020 mmol, 5 mol%), K₃PO₄ (84.9 mg, 0.40 mmol, 100 mol%), and the corresponding furan methanol (0.40 mmol, 100 mol%). THF (0.2 mL, 2 M concentration with respect to the alcohol), H₂O (36 μL, 2.0 mmol, 500 mol%) and α-methyl allyl acetate (86 μL, 0.80 mmol, 200 mol%) were added and the reaction mixture was allowed to stir at 70 °C for 48 hours. The reaction mixture was concentrated *in vacuo* and purified by flash column chromatography (SiO₂) to furnish the corresponding products of crotylation 4a-4c.

General Procedure D for the Preparation of Adducts 4a-4c from Furfurals 2a-2c: To a flame dried re-sealable reaction tube purged with argon and containing a magnetic stirrer, was added (R)-Ir-complex I (20.4 mg, 0.020 mmol, 5 mol%), K₃PO₄ (84.9 mg, 0.400 mmol, 100 mol%), and the corresponding furfural (0.40 mmol, 100 mol%). THF (0.2 mL, 2 M concentration with respect to the aldehyde), H₂O (36 μL, 2.0 mmol, 500 mol%), i-PrOH (61 μL, 0.80 mmol, 200 mol%) and α-methyl allyl acetate (86 μL, 0.80 mmol, 200 mol%) were added and the reaction mixture was allowed to stir at 70 °C for 48 hours. The reaction mixture was concentrated *in vacuo* and purified by flash column chromatography (SiO₂), under the conditions noted, to furnish the corresponding products of crotylation **4a-4c**.

General Experimental Procedures for Adducts 5a-5c

General Procedure E for the Preparation of Adducts 5a-5c from Furan Methanols 1a-1c: To a flame dried re-sealable reaction tube purged with nitrogen and containing a magnetic stirrer, was added (*R*)-Ir-complex II (5 mol%) and the corresponding furan methanol (100 mol%). Toluene (1 M concentration with respect to the alcohol), 1,1-dimethylallene (200 mol%), and propionaldehyde (5 mol%) were added and the reaction mixture was allowed to stir at 40 °C for 72 hours. The reaction mixture was concentrated *in vacuo* and purified by flash column chromatography (SiO₂) to furnish the corresponding products of *tert*-prenylation 5a-5c.

General Procedure F for the Preparation of Adducts 5a-5c from Furfurals 2a-2c: To a flame dried re-sealable reaction tube purged with nitrogen and containing a magnetic stirrer, was added (*R*)-Ir-complex II (5 mol%) and the corresponding furfural (100 mol%). Toluene (1 M concentration with respect to the aldehyde), 1,1-dimethylallene (200 mol%), and *i*-PrOH (200 mol%) were added and the reaction mixture was allowed to stir at 40 °C for 72 hours. The reaction mixture was concentrated *in vacuo* and purified by flash column chromatography (SiO₂) to furnish the corresponding products of *tert*-prenylation 5a-5c.

General Experimental Procedure for Rearrangement Products 6a-6c

General Procedure for the Achmatowicz Rearrangement of Adducts 3b, 4b, and 5b: Alcohols 3b, 4b or 5b (100 mol%) were dissolved in aqueous THF (THF:H₂O, 4:1, 0.1 M) and the solution was cooled to 0 °C. N-bromosuccinimide (100 mol%) was added portion-wise while maintaining a temperature of 0 °C. After the reaction had gone to completion as determined by TLC analysis, the reaction mixture was diluted with dichloromethane and washed with KI (10% aqueous solution), Na₂S₂O₄ (15% aqueous solution), and NaHCO₃ (10% aqueous solution), and brine. The organic layer was dried (MgSO₄), filtered and concentrated *in vacuo*. The crude residue was purified by flash column chromatography (SiO₂) to furnish the corresponding pyrones 6a, 6b or 6c, respectively.

(R)-Ir-catalyst-I [(R)-I]

To a flame dried sealed tube, purged with argon and containing a magnetic stirrer was added [Ir(cod)Cl]₂ (50.4 mg, 0.075 mmol, 100 mol%), (*R*)-C₃-Tunephos (89.2 mg, 0.150 mmol, 200 mol%), Cs₂CO₃ (97.7 mg, 0.300 mmol, 400 mol%), 3-NO₂-4-CN-BzOH (57.6 mg, 0.300 mmol, 400 mol%), allyl acetate (40 μL, 0.375 mmol, 500 mol%). THF (1.5 mL, 0.05M with respect to [Ir(cod)Cl]₂) was added and the reaction mixture was stirred at room temperature for 30 min at which point the reaction mixture was heated to 80 °C and allowed to stir for an additional 120 min. The reaction mixture was filtered and washed with THF (~15mL) until all yellow residue was dissolved. The filtrate was concentrated *in vacuo* (~5 mL) and hexanes (~50 mL) was added. A yellow precipitate formed, which was collected by filtration and dried under vacuum to furnish the title compound (110 mg, 72% yield) as a light yellow powder.²

.

² S. B. Han, I. S. Kim, H. Han, M. J. Krische, *J. Amer. Chem. Soc.* **2009**, *131*, 6916–6917.

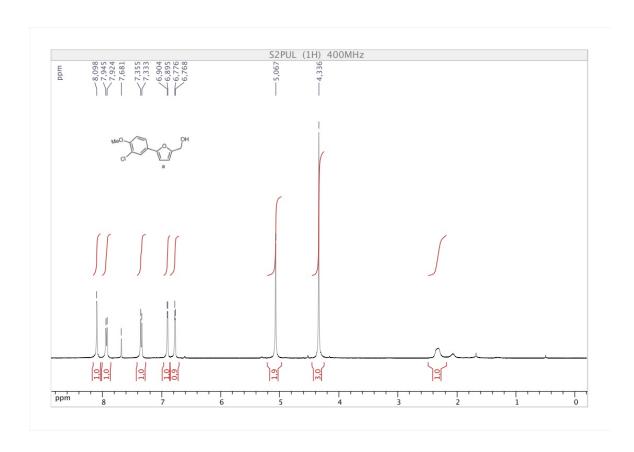
[5-(3-chloro-4-methoxyphenyl)furan-2-yl]methanol (1c)

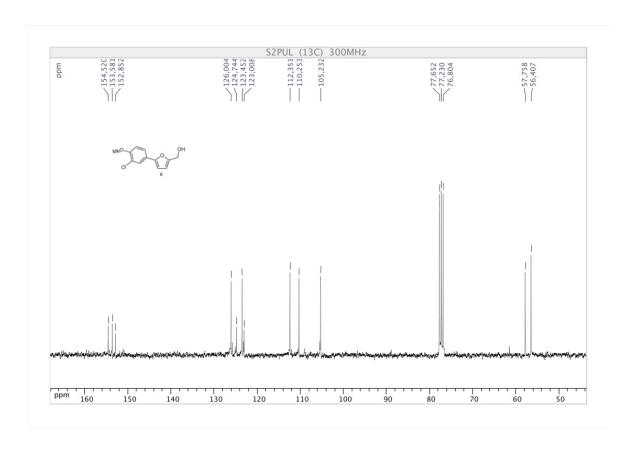
To a solution of 5-(3-chloro-4-methoxyphenyl)furfural (1.00 g, 4.22 mmol, 100 mol%), in neat methanol (40 mL) at 0 °C, was added sodium borohydride (176 mg, 4.65 mmol, 1.1eq.) in small portions with stirring. After evolution of hydrogen ceased, the reaction mixture was a saturated solution of aqueous NH₄Cl was added. The resulting mixture was extracted with dichloromethane and the combined organic extracts were washed with brine, dried (MgSO₄) and concentrated *in vacuo*. The crude product was purified by flash column chromatography (SiO₂: hexane:EtOAc, 3:1) to furnish the title compound (945 mg, 94% yield) as a colorless solid.³

 $Mp = 86 \, ^{\circ}C.$

<u>**TLC**</u> (SiO₂): R_f (Hexane:Et₂O, 3:1) = 0.13.

¹**H NMR** (400 MHz, CDCl₃): 7.66 (s, 1H), 7.49 (d, J = 8.7 Hz, 1H), 6.90 (d, J = 8.6 Hz, 1H), 6.46 (d, J = 3.3 Hz, 1H), 6.33 (d, J = 3.1 Hz, 1H), 4.63 (s, 2H), 3.90 (s, 3H), 1.88 (s, 1H).


¹³C NMR (100 MHz, CDCl₃): = 56.4, 57.7, 105.2, 110.2, 112.3, 123.0, 123.4, 124.7, 126.0, 152.8, 153.6, 154.5, 154.5, 153.6, 152.9, 126.0, 124.7, 123.5, 123.0, 112.4, 110.3, 105.2, 57.8, 56.4.


<u>HRMS</u> (CI): Calcd. for $C_{12}H_{11}O_3^{35}Cl(M)^+$: 238.0397, Found: 238.0398.

FTIR (neat): 3359, 2940, 2839, 1548, 1489, 1461, 1440, 1267, 1062, 1006, 811, 731, 707 cm⁻¹.

-

³ K. Ziach, J. Jurczak, Org. Lett. **2008**, 10, 5159–5162.

(R)-1-(furan-2-yl)but-3-en-1-ol (3a)

Procedure A (*via* alcohol 1a): The reaction mixture was concentrated *in vacuo* and purified by flash column chromatography (SiO₂: pentane:Et₂O, 5:1) to furnish the title compound (37.5 mg, 68% yield, 94% ee) as a colorless oil.

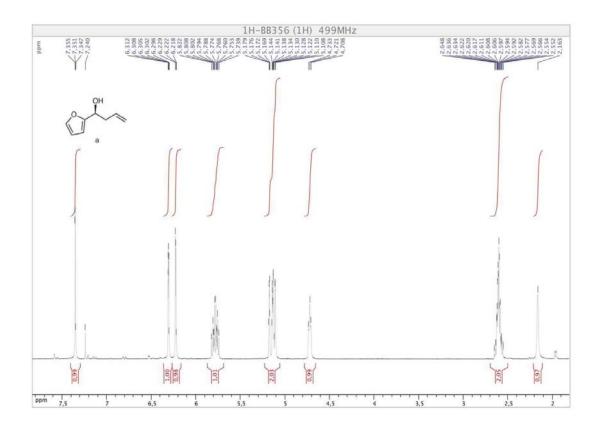
Procedure B (*via* aldehyde 2a): The mixture was concentrated *in vacuo* and purified by flash column chromatography (SiO₂: pentane:Et₂O, 5:1) to furnish the title compound (45.7 mg, 83% yield, 96% ee) as a colorless oil.

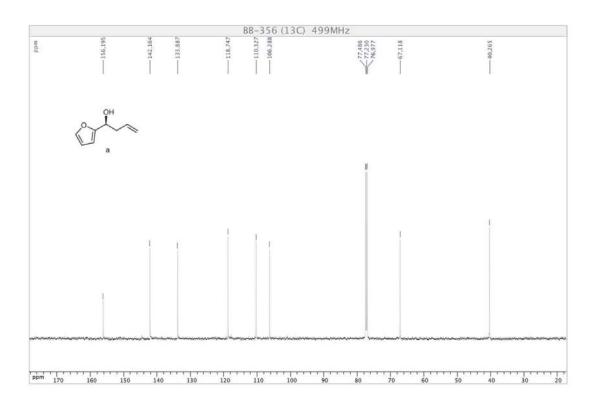
TLC (SiO₂): R_f (Hexane: Et₂O, 5:1) = 0.17.

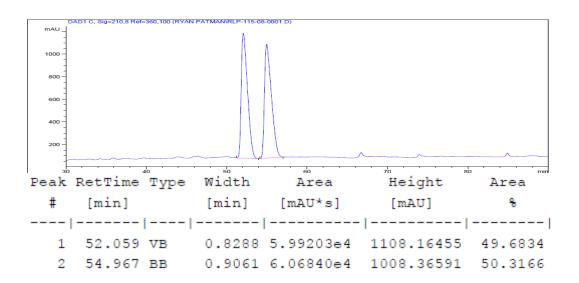
<u>1H NMR</u> (400 MHz, CDCl₃): 7.35 (d, J = 1.8 Hz, 1H), 6.31 (dd, J = 3.2, 1.8 Hz, 1H), 6.23 (d, J = 3.3 Hz, 1H), 5.78 (tdd, J = 17.1, 10.2, 7.1 Hz, 1H), 5.14 (m, 2H), 4.72 (t, J = 6.2 Hz, 1H), 2.60 (m, 2H), 2.16 (s, 1H).

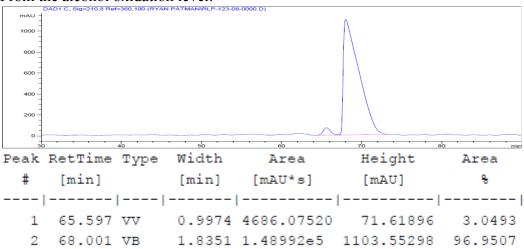
¹³C NMR (100 MHz, CDCl₃): 156.2, 142.2, 133.9, 118.8, 110.3, 106.3, 67.1, 40.3.

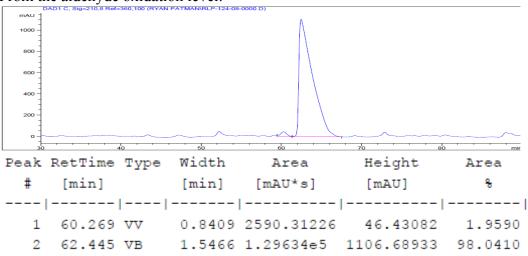
HRMS (CI): Calcd. for $C_8H_9O_2$ (M-H)⁺: 138.0603, Found: 138.0604.


FTIR (neat): 3363, 3078, 2913, 1150, 1010, 918 cm⁻¹.


Opt. Rot. $[\alpha]_D^{26} = +30.5$ (c = 0.688, in CHCl₃) for 93% ee (*R*)-**3a**, Lit.⁴ $[\alpha]_D^{26} +24.9$ (c = 1.0, CHCl₃) for 83% ee (*R*)-**3a**.


<u>**HPLC**</u> (Chiralcel AD-H column, Hexane:*i*-PrOH, 99.5:0.5, 0.5 mL/min, 210 nm): $t_{minor} = 52.1 \text{ min}$, $t_{major} = 55.0 \text{ min}$.


The spectroscopic properties of this compound are consistent with the data available in the literature.⁴


⁴ S. E. Denmark, J. Fu, M. J. Lawler, J. Org. Chem. 2006, 71, 1523–1536.

(R)-1-(5-methylfuran-2-yl)but-3-en-1-ol (3b)

Procedure A (*via* alcohol 1b): The reaction mixture was concentrated *in vacuo* and purified by flash column chromatography (SiO₂: pentane:Et₂O, 5:1) to furnish the title compound (42.8 mg, 70% yield, 91% ee) as a colorless oil.

Procedure B (*via* aldehyde 2b): The reaction mixture was concentrated *in vacuo* and purified by flash column chromatography (SiO₂: pentane:Et₂O, 5:1) to furnish the title compound (56.2 mg, 92% yield, 94% ee) as a colorless oil.

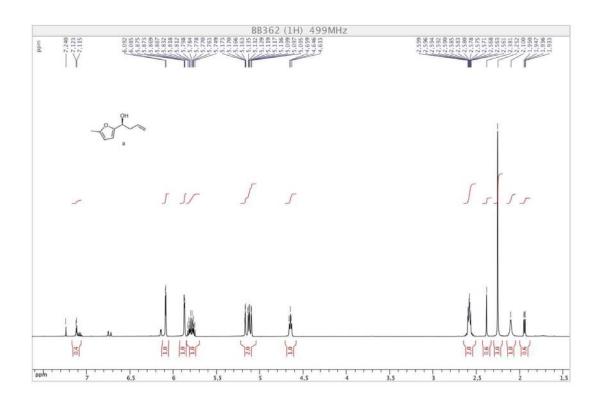
 $\underline{\mathbf{TLC}}$ (SiO₂): R_f (Hexane:Et₂O, 10:1) = 0.07.

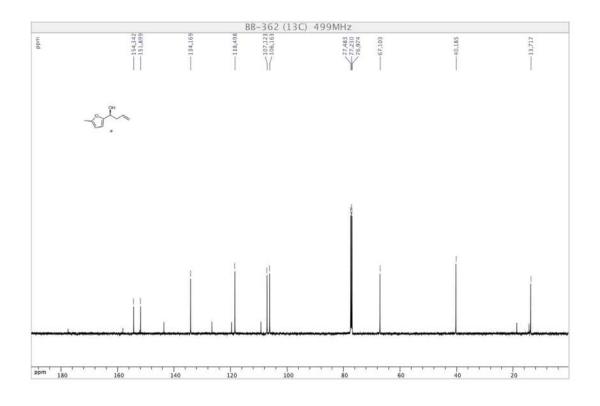
<u>1H NMR</u> (400 MHz, CDCl₃): 6.09 (d, J = 3.1 Hz, 1H), 5.87 (d, J = 2.9 Hz, 1H), 5.79 (dddd, J = 17.2, 10.2, 7.2, 6.9 Hz, 1H), 5.12 (m, 2H), 4.65 (t, J = 6.8 Hz, 1H), 2.58 (m, 2H), 2.25 (s, 3H), 2.10 (s, 1H).

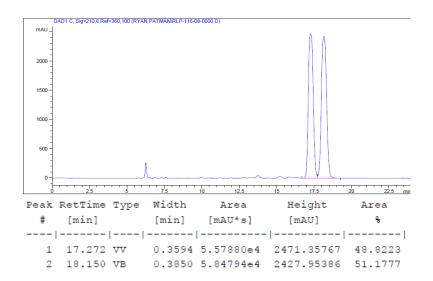
¹³C NMR (100 MHz, CDCl₃): 154.3, 151.9, 134.2, 118.5, 107.1, 106.2, 67.1, 40.2, 13.7.

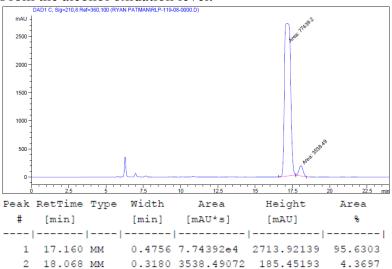
HRMS (CI): Calcd. for $C_9H_{11}O_2$ (M-H)⁺: 151.0759, Found: 151.0756.

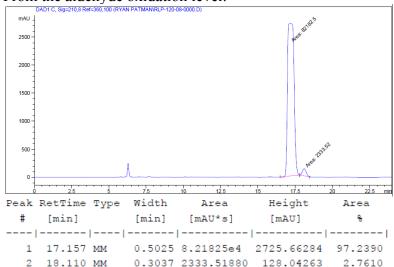
FTIR (neat): 3392, 3078, 2922, 1663, 1513, 1219, 914, 783 cm⁻¹.


Opt. Rot. $[\alpha]_D^{26} = -30.0$ (c = 0.81, in CH₂Cl₂) for 95% ee (*R*)-**3b**, Lit.⁵ $[\alpha]_D^{26} = -24.8$ (c = 0.98, CH₂Cl₂) for 94% ee (*R*)-**3b**.


<u>**HPLC**</u> (Chiralcel OD-H column, Hexane:*i*-PrOH, 98:2, 0.5 mL/min, 210 nm): $t_{major} = 17.2 \text{ min}$, $t_{minor} = 18.2 \text{ min}$.


The spectroscopic properties of this compound are consistent with the data available in the literature.⁵


.


⁵ J. Lu. S.-J. Ji. Y.-C. Teo, T.-P. Loh, *Org. Lett.* **2005**, *7*, 159–161.

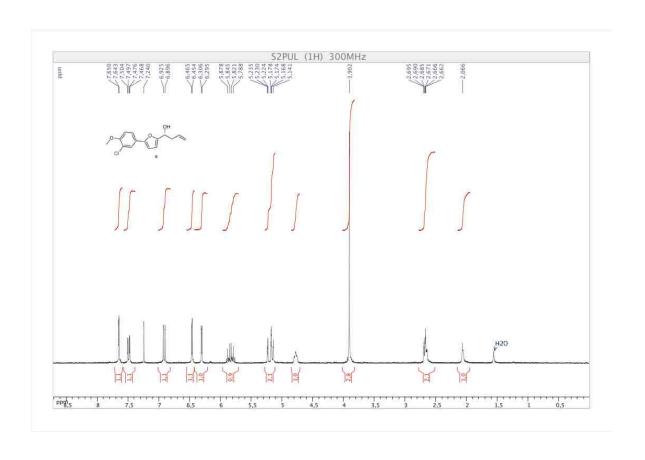
(R)-1-[5-(3-chloro-4-methoxyphenyl)furan-2-yl]but-3-en-1-ol (3c)

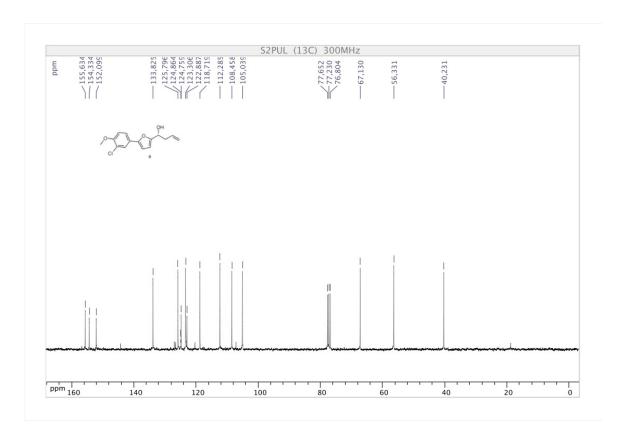
Procedure A (*via* alcohol 1c): The reaction mixture was concentrated *in vacuo* and purified by flash column chromatography (SiO₂: hexane:Et₂O, 4:1) to furnish the title compound (94.9 mg, 85% yield, 96% ee) as a viscous yellow oil.

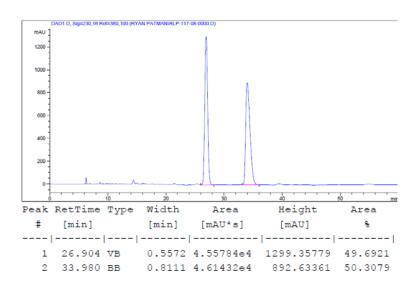
Procedure B (*via* aldehyde 2c): The reaction mixture was concentrated *in vacuo* and purified by flash column chromatography (SiO₂: hexane:Et₂O, 4:1) to furnish the title compound (105 mg, 95% yield, 96% ee) as a viscous yellow oil.

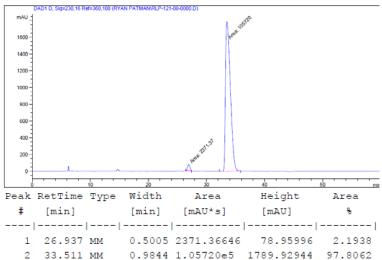
<u>**TLC**</u> (SiO₂): R_f (Hexane:Et₂O, 3:1) = 0.20.

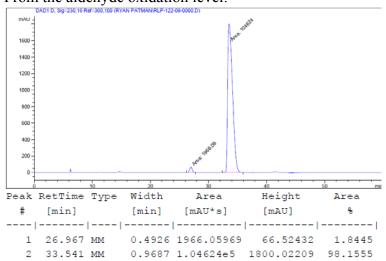
¹H NMR (400 MHz, CDCl₃): 7.65 (d, J = 2.2 Hz, 1H), 7.49 (dd, J = 8.6, 2.2 Hz, 1H), 6.91 (d, J = 8.6 Hz, 1H) 6.46 (d, J = 3.4 Hz, 1H), 6.30 (d, J = 3.4 Hz, 1H), 5.83 (tdd, J = 17.1, 10.2, 7.0, Hz, 1H), 5.18 (m, 2H), 4.77 (dd, J = 7.0, 5.8 Hz, 1H), 3.90 (s, 3H), 2.67 (m, 2H), 2.07 (s, 1H).


¹³C NMR (100 MHz, CDCl₃): 155.6, 154.5, 152.3, 133.8, 126.0, 124.9, 123.4, 123.0, 119.0, 112.4, 108.6, 105.1, 67.2, 56.5, 40.4.


HRMS (CI): Calcd. for $C_{15}H_{14}O_3^{35}Cl$ (M-H)⁺: 277.0631, Found: 277.0629.


FTIR (neat): 3383, 2940, 1658, 1613, 1490, 1475, 1266, 1062, 1019, 786, 736, 708 cm⁻¹.


Opt. Rot. $[\alpha]_D^{26} = +18.8$ (c = 0.75, in CHCl₃) for 97% ee (*R*)-3c.


<u>HPLC</u> (Chiralcel AS-H column, Hexane:*i*-PrOH, 95:5, 0.5 mL/min, 210 nm): $t_{minor} = 26.9 \text{ min}$, $t_{major} = 34.0 \text{ min}$.

(1R,2R)-1-(furan-2-yl)-2-methylbut-3-en-1-ol (4a)

Procedure C (*via* alcohol 1a): The reaction mixture was concentrated *in vacuo* and purified by flash column chromatography (SiO₂: pentane:Et₂O, 5:1) to furnish the title compound (47.1 mg, 77% yield, 10:1 dr, 92% ee) as a colorless oil.

Procedure D (*via* aldehyde 2a): The reaction mixture was concentrated *in vacuo* and purified by flash column chromatography (SiO₂: pentane:Et₂O, 5:1) to furnish the title compound (43.9 mg, 72% yield, >20:1 dr, 97% ee) as a colorless oil.

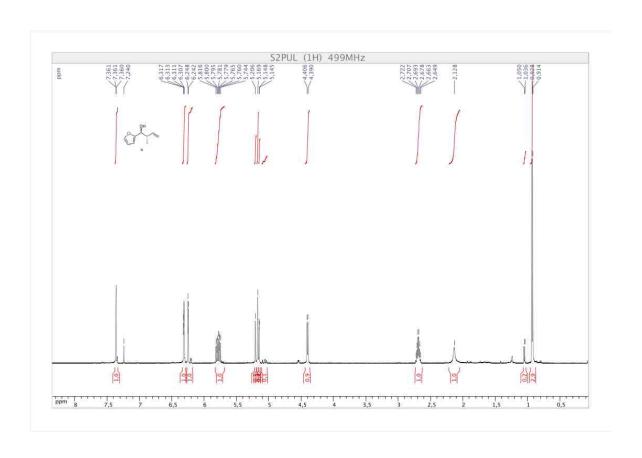
TLC (SiO₂): R_f (Hexane:Et₂O, 5:1) = 0.09.

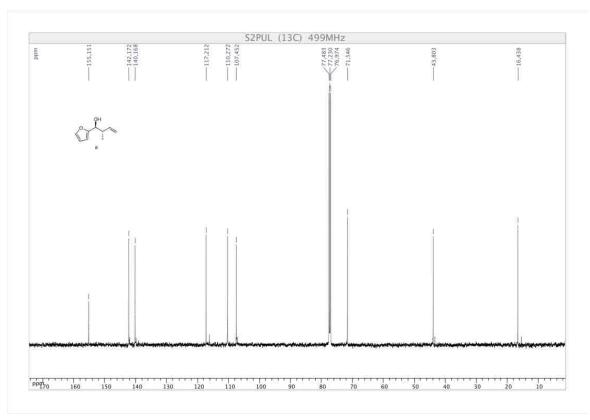
¹H NMR (400 MHz, CDCl₃): 7.36 (d, J = 1.8 Hz, 1H), 6.31 (dd, J = 3.3, 1.9 Hz, 1H), 6.25 (d, J = 3.2 Hz, 1H), 5.78 (ddd, J = 17.2, 10.3, 8.1 Hz, 1H), 4.40 (d, J = 7.8 Hz, 1H), 2.68 (sext, J = 7.3 Hz, 1H), 2.13 (s, 1H), 0.92 (d, J = 6.8 Hz, 3H).

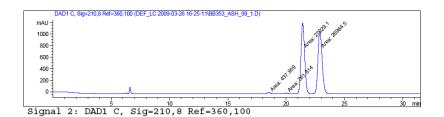
¹³C NMR (100 MHz, CDCl₃): 155.2, 142.2, 140.2, 117.2, 110.3, 107.5, 71.6, 43.8, 16.4.

HRMS (CI): Calcd. for $C_9H_{11}O_2$ (M-H)⁺: 151.0759, Found: 151.0757.

FTIR (neat): 3398, 2973, 2931, 1073, 1007, 913 cm⁻¹.

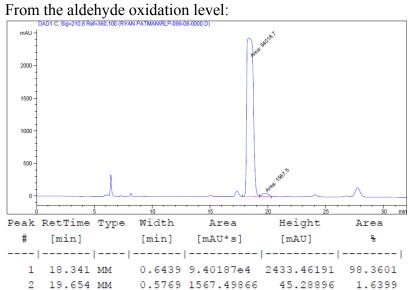

Opt. Rot. $[\alpha]_D^{26} = +126.5$ (c = 0.15, in CHCl₃) for 95% ee


<u>**HPLC**</u> (Chiralcel AS-H column, Hexane:*i*-PrOH, 99:1, 0.5 mL/min, 210 nm): $t_{major} = 21.4 \text{ min}$, $t_{minor} = 22.9 \text{ min}$.


The spectroscopic properties of this compound are consistent with the data available in the literature.⁶

-

⁶ M. Tsubuki, T. Kamata, M. Nakatani, K. Yamazaki, T. Matsui, T. Honda, *Tetrahedron: Asymmetry* **2000**, *11*, 4725-4736.



Peak	RetTime	Тур	ре	Width	Area	Height	Area
				[min]		[mAU]	%
1	18.519	MM	Т	0.3414	437.95856	21.38206	0.8008
2	20.011	MM	Т	0.3443	261.81375	12.67479	0.4787
3	21.413	MM	Т	0.3703	2.70291e4	1216.39795	49.4193
4	22.886	MM	Т	0.4145	2.69645e4	1084.21619	49.3012

Totals : 5.46934e4 2334.67098

From the alcohol oxidation level:

S19

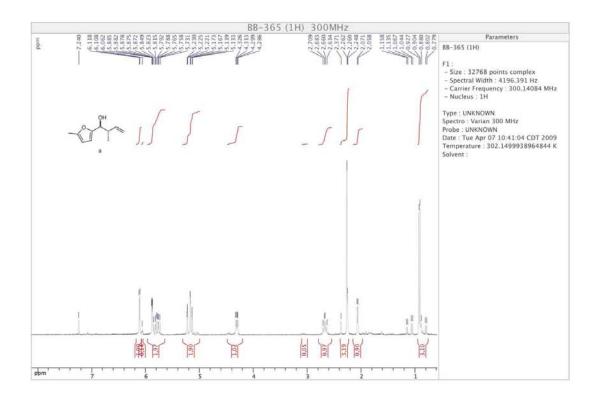
(1*R*,2*R*)-2-methyl-1-(5-methylfuran-2-yl)but-3-en-1-ol (4b)

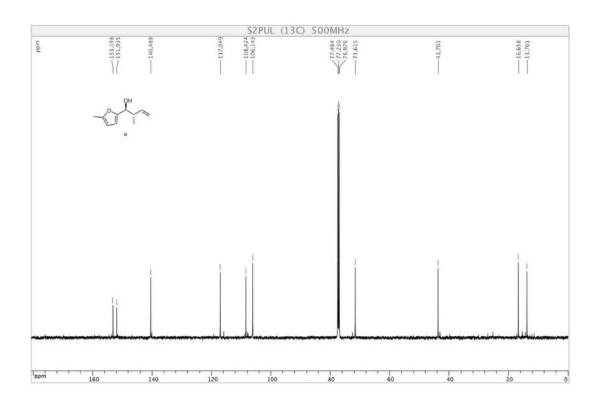
Procedure C (*via* alcohol 1b): The reaction mixture was concentrated *in vacuo* and purified by flash column chromatography (SiO₂: pentane:Et₂O, 5:1) to furnish the title compound (50.3 mg, 76% yield, 7:1 dr, 91% ee) as a colorless oil.

Procedure D (*via* aldehyde 2b): The reaction mixture was concentrated *in vacuo* and purified by flash column chromatography (SiO₂: pentane:Et₂O, 5:1) to furnish the title compound (52.6 mg, 79% yield, >20:1 dr, 94% ee) as a colorless oil.

 $\underline{\mathbf{TLC}}$ (SiO₂): R_f (Hexane:Et₂O, 5:1) = 0.09.

¹H NMR (400 MHz, CDCl₃): 6.11 (d, J = 3.2 Hz, 1H), 5.88 (d, J = 3.2 Hz, 1H), 5.79 (ddd, J = 17.3, 10.3, 8.1 Hz, 1H), 5.17 (m, 2H), 4.31 (dd, J = 8.1, 3.8 Hz, 1H), 2.67 (sext, J = 7.3 Hz, 1H), 2.26 (s, 3H), 2.06 (d, J = 4.0 Hz, 1H), 0.92 (d, J = 6.8 Hz, 3H).

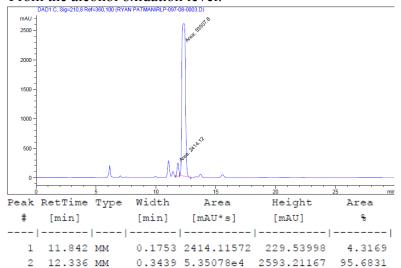

¹³C NMR (100 MHz, CDCl₃): 153.2, 151.9, 140.5, 117.1, 108.4, 106.1, 71.6, 43.7, 16.7, 13.8.

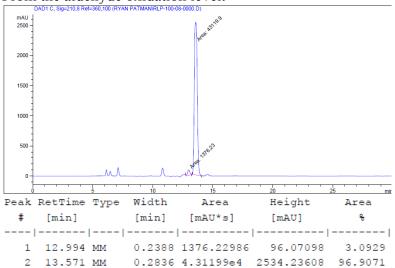

HRMS (CI): Calcd. for $C_{10}H_{13}O_2$ (M-H)⁺: 165.0916, Found: 165.0916.

FTIR (neat): 3414, 2965, 2924, 1219, 1017, 912 cm⁻¹.

Opt. Rot. $[\alpha]_D^{26} = +69.1$ (c = 0.58, in CHCl₃) for 88% ee

<u>**HPLC**</u> (Chiralcel AD-H column, hexane:*i*-PrOH, 95:5, 0.5 mL/min, 210 nm): $t_{minor} = 14.2 \text{ min}$, $t_{major} = 14.9 \text{ min}$





Signal 1: DAD1 C, Sig=210,8 Ref=360,100

Peak :	RetTime	Typ	e	Width	Area	Height	Area
#	[min]			[min]	[mAU*s]	[mAU]	8
			-				
1	13.037	MM	Т	0.1679	2544.80933	252.56302	4.7655
2	13.741	MM	Т	0.1848	3013.97974	271.80624	5.6441
3	14.245	MM	Т	0.2182	2.43982e4	1863.61255	45.6893
4	14.863	MM	R	0.2277	2.34432e4	1715.61096	43.9010

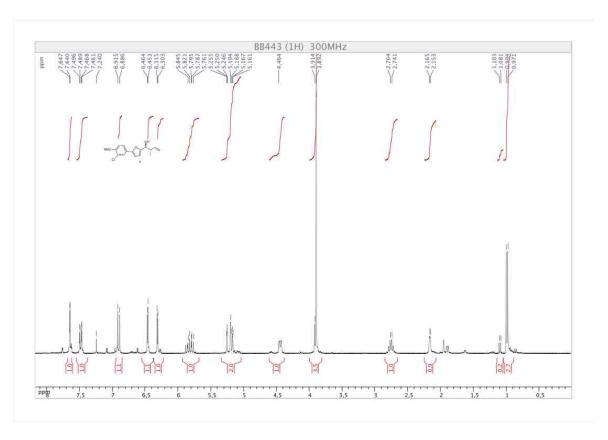
(1R,2R)-1-[5-(3-chloro-4-methoxyphenyl)furan-2-yl]-2-methylbut-3-en-1-ol (4c)

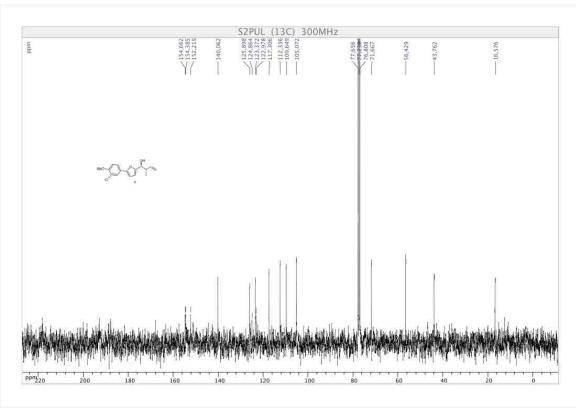
Procedure C (*via* alcohol 1c): The reaction mixture was concentrated *in vacuo* and purified by flash column chromatography (SiO₂: hexane:Et₂O, 4:1) to furnish the title compound (111 mg, 95% yield, 10:1 dr, 95% ee) as a viscous yellow oil.

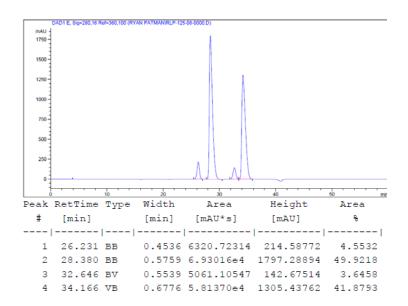
Procedure D (*via* aldehyde 2c): The reaction mixture was concentrated *in vacuo* and purified by flash column chromatography (SiO₂: hexane:Et₂O, 4:1) to furnish the title compound (110 mg, 94% yield, >20:1 dr, 99% ee) as a viscous yellow oil.

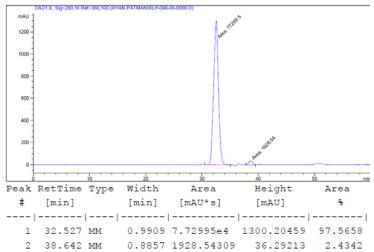
 $\underline{\mathbf{TLC}}$ (SiO₂): R_f (Hexane:EtOAc, 3:1) = 0.14.

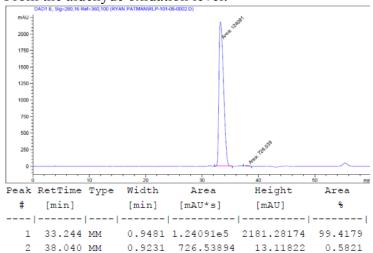
H NMR (400 MHz, CDCl₃): 7.64 (d, J = 2.2 Hz, 1H), 7.48 (dd, J = 8.6, 2.1 Hz, 1H), 6.90 (d, J = 8.7 Hz, 1H), 6.46 (d, J = 3.5 Hz, 1H), 6.31 (d, J = 3.3 Hz, 1H), 5.82 (ddd, J = 17.3, 10.3, 8.0 Hz, 1H), 5.19 (m, 2H), 4.44 (dd, J = 7.8, 2.7 Hz, 1H), 3.90 (s, 3H), 2.75 (m, 1H), 2.16 (d, J = 3.0 Hz, 1H), 0.98 (d, J = 6.8 Hz, 3H).


¹³C NMR (100 MHz, CDCl₃): 154.7, 154.4, 152.2, 140.1, 125.9, 124.9, 123.4, 123.0, 117.3, 112.3, 109.6, 105.1, 71.7, 56.4, 43.8, 16.6.


HRMS (CI): Calcd. for $C_{16}H_{18}O_3^{35}Cl$ (M+H)⁺: 293.0944, Found: 293.0946.


FTIR (neat): 3427, 2967, 1490, 1439, 1289, 1267, 1062, 1018, 909, 788, 730, 709 cm⁻¹.


Opt. Rot. $[\alpha]_D^{26} = +4.7$ (c = 1.07, in CHCl₃) for 83% ee


<u>HPLC</u> (Chiralcel AD-H column, Hexane:*i*-PrOH, 98:2, 0.8 mL/min, 210 nm): $t_{major} = 28.4 \text{ min}$, $t_{minor} = 34.2 \text{ min}$.

(R)-1-(furan-2-yl)-2,2-dimethylbut-3-en-1-ol (5a)

Procedure E (*via* alcohol 1a): Reaction was conducted on 0.4 mmol scale with respect to alcohol. The reaction mixture was concentrated *in vacuo* and purified by flash column chromatography (SiO₂: hexane:EtOAc, 10:1) to furnish the title compound (54.5 mg, 82% yield, 87% ee) as a colorless oil.

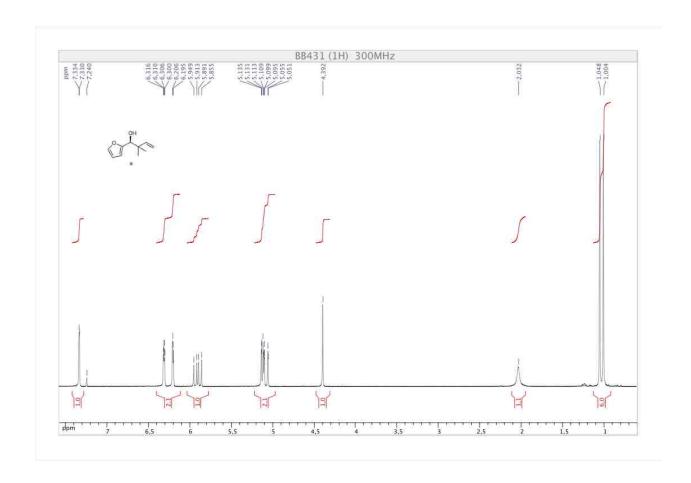
Procedure F (*via* aldehyde 2a): Reaction was conducted on 0.4 mmol scale with respect to aldehyde. The reaction mixture was concentrated *in vacuo* and purified by flash column chromatography (SiO₂: hexane:EtOAc, 10:1) to furnish the title compound (54.5 mg, 82% yield, 88% ee) as a colorless oil.

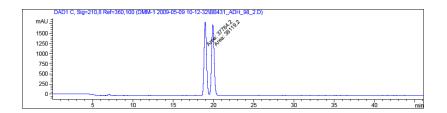
<u>**TLC**</u> (SiO₂): R_f (Hexane: Et₂O, 10:1) = 0.18.

¹H NMR (400 MHz, CDCl₃): 7.33 (m, 1H), 6.31 (dd, J = 3.1, 1.7 Hz, 1H), 6.20 (d, J = 3.2 Hz, 1H), 5.90 (dd, J = 17.5, 10.9 Hz, 1H), 5.10 (m, 2H), 4.39 (s, 1H), 2.02 (s, 1H), 1.05 (s, 3H), 1.00 (s, 3H).

HRMS (CI): Calcd. for $C_{10}H_{15}O_2$ (M+H)⁺: 167.1072, Found: 167.1077.

FTIR (neat): 3435, 2966, 2873, 1638, 1469, 1149, 1007, 915, 731 cm⁻¹.

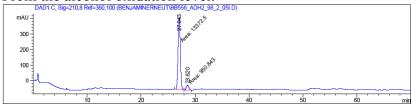

Opt. Rot. $[\alpha]_D^{26} = +78.4$ (c = 0.97, in Ethanol), Lit. $[\alpha]_D^{26} = -15.1$ (c = 1.00, in ethanol) for 95% ee (S)-5a.


<u>HPLC</u> (Chiralcel AD-H column, Hexane:*i*-PrOH, 98:2, 0.5 mL/min, 210 nm): $t_{major} = 19.0 \text{ min}$, $t_{minor} = 19.9 \text{ min}$.

The spectroscopic properties of this compound are consistent with the data available in the literature.

-

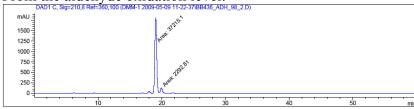
⁷ S. E. Denmark, J. Fu, M. J. Lawler, *J. Org. Chem.* **2006**, *71*, 1523–1536.



Signal 1: DAD1 C, Sig=210,8 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	18.977	MM T	0.3470	3.77842e4	1814.89001	49.7794
2	19.916	MM T	0.3631	3.81192e4	1749.71460	50.2206

Totals: 7.59033e4 3564.60461


From the alcohol oxidation level:

Signal 1: DAD1 C, Sig=210,8 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	&
1	27.043	MM T	0.4844	1.33725e4	460.13919	93.3616
2	28.620	MM T	0.4986	950.84259	31.78444	6.6384

From the aldehyde oxidation level:

Signal 1: DAD1 C, Sig=210,8 Ref=360,100

Peak	RetTime	Туј	ре	Width	Area	Height	Area
#	[min]			[min]	[mAU*s]	[mAU]	8
1	19.049	MM	Т	0.3411	3.72151e4	1818.16675	94.1966
2	19.948	MM	Т	0.3245	2292.80566	117.75801	5.8034

Totals: 3.95079e4 1935.92476

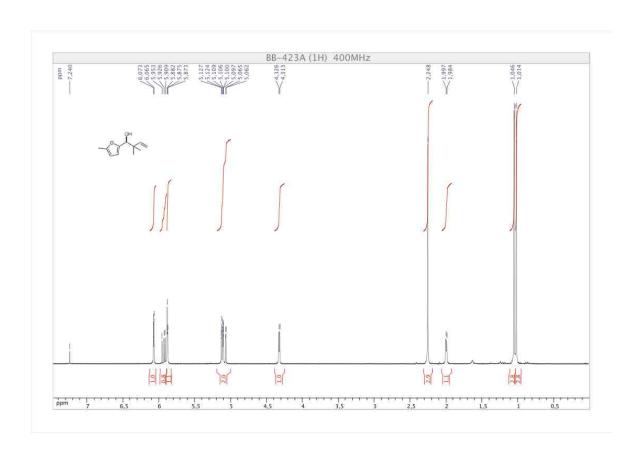
(R)-2,2-dimethyl-1-(5-methylfuran-2-yl)but-3-en-1-ol (5b)

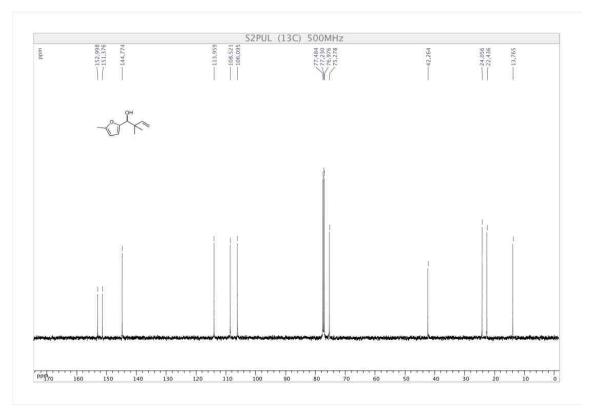
Procedure E (*via* alcohol 1b): The reaction was conducted on 0.6 mmol scale with respect to alcohol. The reaction mixture was concentrated *in vacuo* and purified by flash column chromatography (SiO₂, hexane:EtOAc, 10:1) to furnish the title compound (90.7 mg, 84% yield, 84% ee) as a colorless oil.

Procedure F (*via* aldehyde 2b): The reaction was conducted on 0.6 mmol scale with respect to aldehyde. The reaction mixture was concentrated *in vacuo* and purified by flash column chromatography (SiO₂, hexane:EtOAc, 10:1) to furnish the title compound (96.1 mg, 89% yield, 89% ee) as a colorless oil.

<u>**TLC**</u> (SiO₂): R_f (Hexane:Et₂O, 10:1) = 0.22.

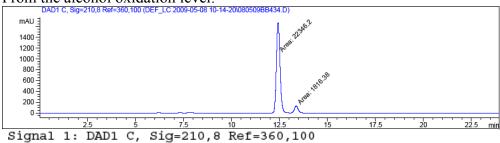
¹**H NMR** (400 MHz, CDCl₃): 6.07 (d, J = 3.0 Hz, 1H), 5.92 (dd, J = 17.4, 10.9 Hz, 1H), 5.88 (d, J = 3.0 Hz, 1H), 5.11 (dd, J = 10.9, 1.3 Hz, 1H), 5.09 (dd, J = 17.4, 1.2 Hz, 1H), 4.32 (d, J = 5.0 Hz, 1H), 2.25 (s, 3H), 1.99 (d, J = 5.3 Hz, 1H), 1.05 (s, 3H), 1.01 (s, 3H).

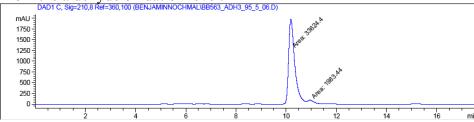

¹³C NMR (100 MHz, CDCl₃): 153.0, 151.4, 144.8, 114.0, 108.5, 106.1, 75.3, 42.3, 24.1, 22.4, 13.8.


HRMS (CI): Calcd. for $C_{11}H_{16}O_2$ (M)⁺: 180.1150, Found: 180.1147.


FTIR (neat): 3439, 2964, 2924, 2873, 1638, 1560, 1380, 1057, 1019, 913, 783 cm⁻¹.

Opt. Rot. $[\alpha]_D^{26} = +59.8$ (c = 1.14, in CHCl₃).


<u>**HPLC**</u> (Chiralcel AD-H column, hexane:*i*-PrOH, 95:5, 0.5 mL/min, 210 nm): $t_{major} = 12.4 \text{ min}$, $t_{minor} = 13.4 \text{ min}$.



P	eak	RetTime	Тур	ре	Width	Area	Height	Area
	#	[min]			[min]	[mAU*s]	[mAU]	8
_								
	1	12.472	MM	Т	0.2136	2.58257e4	2015.24121	49.3256
	2	13.398	MM	Т	0.2314	2.65319e4	1910.89221	50.6744

Peak	RetTime	Тур	ре	Width	Area	Height	Area
					[mAU*s]		&
1	12.425	MM	Т	0.2207	2.23462e4	1687.33789	92.4827
2	13.367	MM	Т	0.2293	1816.37939	131.99971	7.5173

Totals : 2.41626e4 1819.33760

Signal 1: DAD1 C, Sig=210,8 Ref=360,100

Peak	RetTime	Тур	e Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
			-			
1	10.186	MM	T 0.2826	3.36244e4	1982.71423	94.4298
2	10.953	MM	T 0.3379	1983.43518	92.30791	5.5702

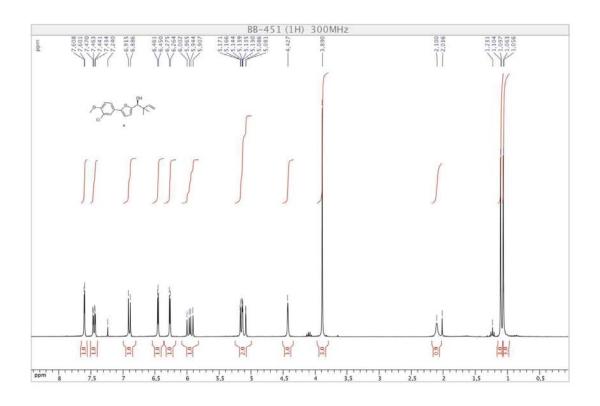
(R)-1-(5-(3-chloro-4-methoxyphenyl)furan-2-yl)-2,2-dimethylbut-3-en-1-ol (5c)

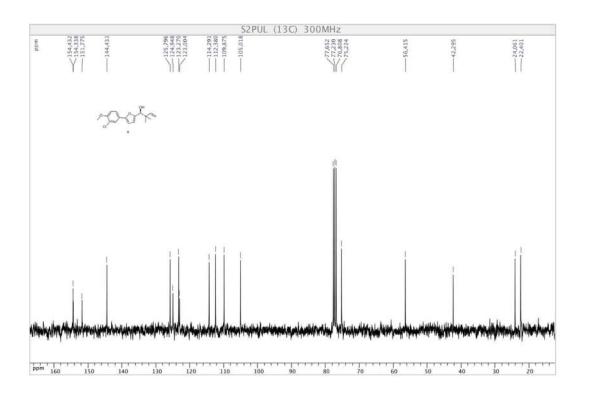
Procedure E (*via* alcohol 1b): The reaction was conducted on 0.2 mmol scale with respect to alcohol. The reaction mixture was concentrated *in vacuo* and purified by flash column chromatography (SiO₂, hexane:EtOAc, 3:1) to afford the title compound (56.0 mg, 91% yield, 85% ee) as a colorless oil.

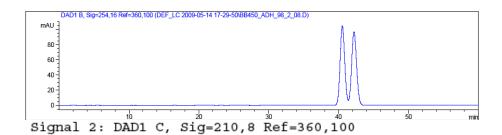
Procedure F (*via* aldehyde 2b): The reaction was conducted on 0.2 mmol scale with respect to aldehyde. The reaction mixture was concentrated *in vacuo* and purified by flash column chromatography (SiO₂, hexane:EtOAc, 3:1) to afford the title compound (57.7 mg, 94% yield, 93% ee) as a colorless oil.

<u>**TLC**</u> (SiO₂): R_f (Hexane: Et_2O , 3:1) = 0.25.

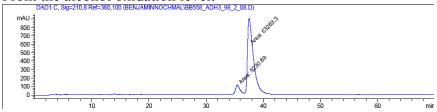
¹H NMR (400 MHz, CDCl₃): 7.60 (d, J = 2.2 Hz, 1H), 7.45 (dd, J = 8.6, 2.3, Hz, 1H), 6.90 (d, J = 8.6 Hz, 1H), 6.46 (d, J = 3.3 Hz, 1H), 6.27 (d, J = 3.2 Hz, 1H), 5.95 (dd, J = 17.4, 10.8 Hz, 1H), 5.15 (dd, J = 10.6, 1.2 Hz, 1H), 5.11 (dd, J = 17.4, 1.2 Hz, 1H), 4.43 (s, 1H), 3.89 (s, 3H), 2.10 (s, 1H), 1.10 (s, 3H), 1.06 (s, 3H).

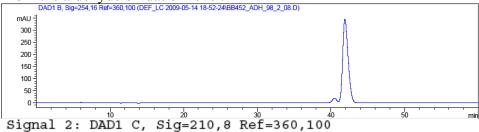

¹³C NMR (100 MHz, CDCl₃): 154.4, 154.3, 151.8, 144.4, 125.8, 124.9, 123.3, 123.0, 114.3, 112.4, 109.9, 105.0, 75.2, 56.4, 42.3, 24.1, 22.4.

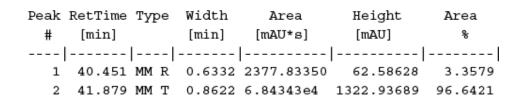

HRMS (CI): Calcd. for $C_{17}H_{18}O_2^{35}Cl$ (M-OH)⁺: 289.0995, Found: 289.0999.


FTIR (film): 3447, 2965, 1544, 1489, 1266, 1018, 811, 708 cm⁻¹.

Opt. Rot. $[\alpha]_D^{26} = +51.0$ (c = 1.00, in CHCl₃).


<u>HPLC</u> (Chiralcel AD-H column, hexane:*i*-PrOH, 98:2, 0.8 mL/min, 210 nm): $t_{minor} = 40.5 \text{ min}$, $t_{major} = 41.9 \text{ min}$.




Pε	eak	RetTime	Туре	Width	Area	Height	Area
	#	[min]		[min]	[mAU*s]	[mAU]	%
	1	40.520	MM T	0.9266	1.77167e4	403.86667	50.2041
	2	42.193	MM T	0.7889	1.75726e4	371.23380	49.7959

Signal 1: DAD1 C, Sig=210,8 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	&
1	35.450	MM T	0.9697	5230.69141	105.65318	7.6367
2	37.507	MM T	1.1860	6.32633e4	889.02063	92.3633

(R)-2-allyl-6-hydroxy-6-methyl-2H-pyran-3(6H)-one (6a)

Procedure G (*via* alcohol (*R*)-3b): The reaction was conducted on 0.329 mmol scale with respect to alcohol. The crude product purified by flash column chromatography (SiO₂: hexane:Et₂O, 2:1) to furnish the title compound (41.5 mg, 75% yield, 94% ee) as a colorless oil.

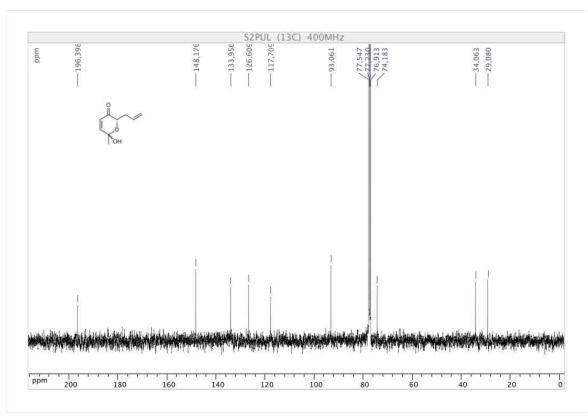
<u>**TLC**</u> (SiO₂): R_f (Pet. Ether: Et_2O , 2:1) = 0.10.

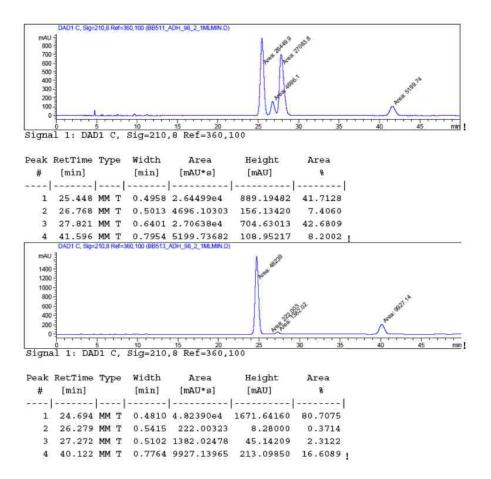
H NMR (400 MHz, CDCl₃): 6.79 (d, J = 10.1 Hz, 1H), 5.99 (d, J = 10.0 Hz, 1H), 5.81 (tdd, J = 17.2, 10.2, 6.8 Hz, 1H), 5.12 (dd, J = 17.1, 2.0 Hz, 1H), 5.05 (dd, J = 10.1, 1.8 Hz, 1H), 4.56 (dd, J = 7.7, 3.9 Hz, 1H), 2.84 (s, 1H), 2.67 (m, 1H), 2.42 (m, J = 7.5 Hz, 1H), 1.61 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): 196.4, 148.1, 134.0, 126.6, 117.7, 93.1, 74.2, 34.1, 29.1.

HRMS (CI): Calcd. for $C_9H_{12}O_3$ (M+H)⁺: 169.0865, Found: 169.0868.

FTIR (neat): 3392, 3075, 2989, 2917, 1687, 1643, 1402, 1378, 1270, 1123, 1083, 995, 920, 736 cm⁻¹.


<u>HPLC</u> (Chiralcel AD-H column, hexane:*i*-PrOH, 98:2, 1.0 mL/min, 210 nm): t_{major}=24.7 min, t_{minor}=27.3 min.


The spectroscopic properties of this compound are consistent with the data available in the literature.⁸

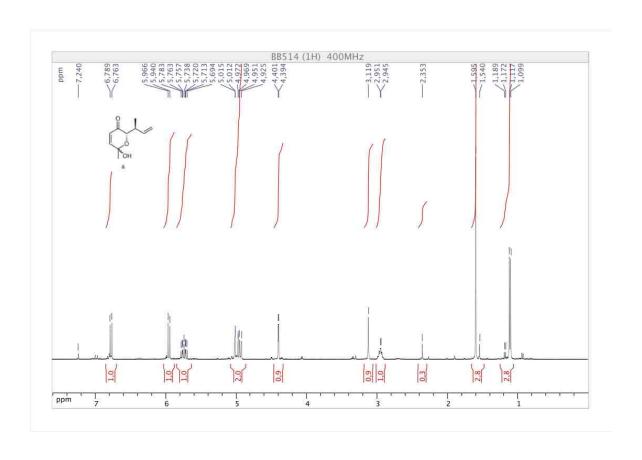
_

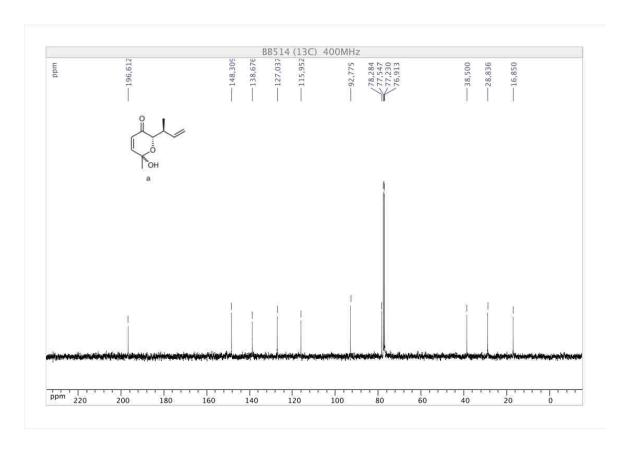
⁸ G. Piancatelli, A. Scettri, M. D'Auria, Tet. Lett. 1977, 18, 2199–2200.

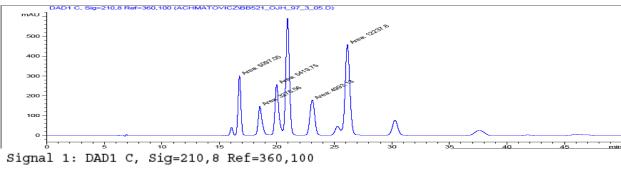
(S)-2-((S)-but-3-en-2-yl)-6-hydroxy-6-methyl-2H-pyran-3(6H)-one (6b)

Procedure G (*via* alcohol (*S*,*S*)-4b): The reaction was conducted on 1.23 mmol scale with respect to alcohol. The crude product purified by flash column chromatography (SiO₂, hexane:Et₂O, 2:1) to afford the title compound (166 mg, 74% yield, 82% ee) as a colorless oil.

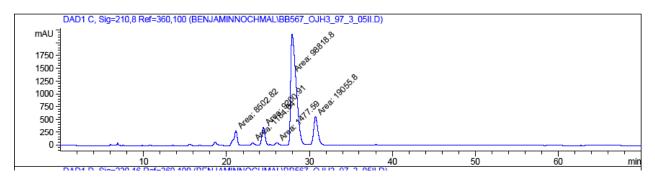
TLC (SiO₂): R_f (Pet. Ether: Et₂O, 2:1) = 0.27.


<u>1H NMR</u> (400 MHz, CDCl₃): 6.78 (d, J = 10.1 Hz, 1H), 5.95 (d, J = 10.1 Hz, 1H), 5.74 (ddd, J = 17.4, 10.4, 7.7 Hz, 1H), 4.97 (m, 2H), 4.40 (d, J = 2.8 Hz, 1H), 3.12 (s, 1H), 2.95 (m, 1H), 1.60 (s, 3H), 1.11 (d, J = 7.1 Hz, 3H).


¹³C NMR (100 MHz, CDCl₃): 196.6, 148.3, 138.7, 127.0, 116.0, 92.8, 78.3, 38.5, 28.8, 16.9.


HRMS (CI): Calcd. for $C_{10}H_{15}O_3$ (M+H)⁺: 183.1021, Found: 183.1024.

<u>FTIR</u> (neat): 3393, 3078, 2981, 2936, 1683, 1639, 1454, 1403, 1376, 1278, 1235, 1124, 1092, 1028, 998, 914, 778 cm⁻¹.


<u>**HPLC**</u> (Chiralcel OJ-H column, Hexane:*i*-PrOH, 97:3, 0.5 mL/min, 210 nm): $t_{major} = 20.6$ min, $t_{minor} = 26.4$ min.

Peak	RetTime	Тур	е	Width	Area	Height	Area
#	[min]			[min]	[mAU*s]	[mAU]	8
			-				
1	16.737	MM	Т	0.2816	5097.04590	301.67883	11.7546
2	18.510	MM	Т	0.3776	3276.55591	144.62331	7.5563
3	19.969	MM	Т	0.3641	5419.75342	248.08441	12.4988
4	20.918	MM	R	0.3559	1.23377e4	577.78363	28.4529
5	23.069	MM	Т	0.4733	4993.12646	175.84109	11.5150
6	26.120	MM '	Т	0.4612	1.22378e4	442.28876	28.2224

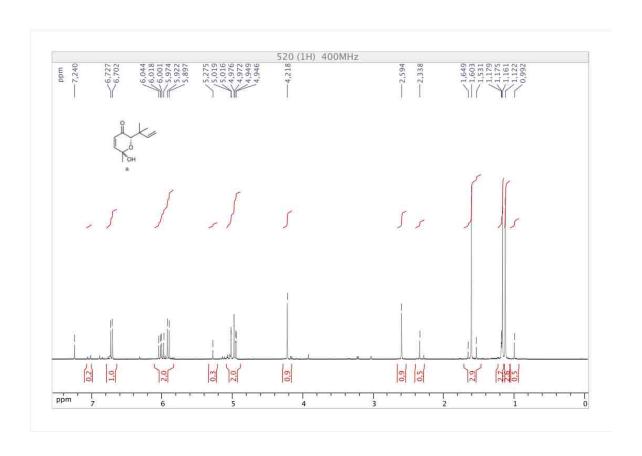
Signal 1: DAD1 C, Sig=210,8 Ref=360,100

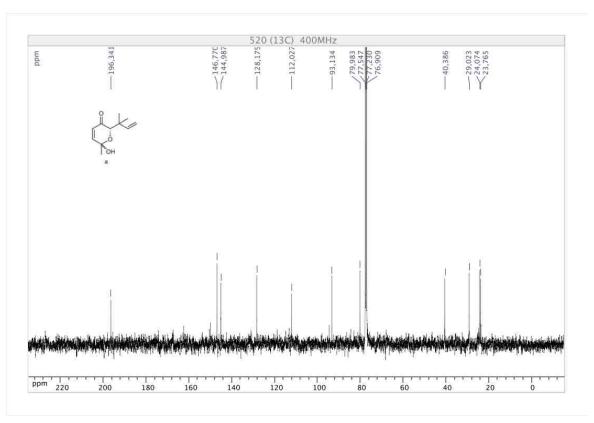
Peak	RetTime	Тур	ре	Width	Area	Height	Area
#	[min]			[min]	[mAU*s]	[mAU]	8
1	21.120	MM	Т	0.4893	8502.81934	289.62146	6.1507
2	23.189	MM	Т	0.4153	1184.64026	47.54165	0.8569
3	24.436	MM	Т	0.5486	9200.90820	355.30753	6.6557
4	26.103	MM	Т	0.4666	1477.59485	52.77736	1.0689
5	27.896	MM	Т	0.7629	9.88188e4	2158.84131	71.4832

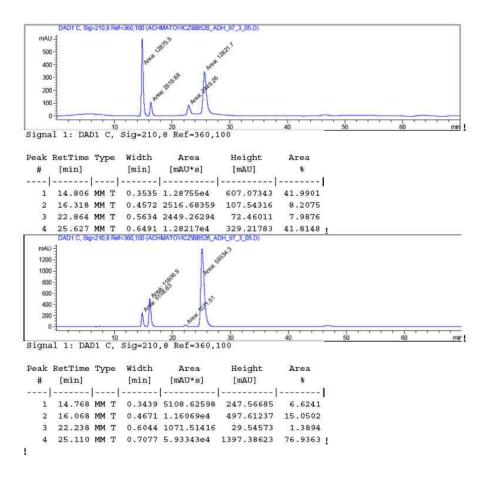
(*R*)-6-hydroxy-6-methyl-2-(2-methylbut-3-en-2-yl)-2H-pyran-3(6H)-one (6c)

Procedure G (*via* alcohol (*R*)-5b): The reaction was conducted on 0.201 mmol scale with respect to alcohol. The crude product purified by flash column chromatography (SiO₂: hexane:Et₂O, 2:1) to furnish the title compound (16.9 mg, 43% yield, 84% ee) as a colorless oil.

TLC (SiO₂): R_f (Pet. Ether: Et_2O , 3:1) = 0.19.


¹**H NMR** (400 MHz, CDCl₃): 6.71 (d, J = 10.1 Hz, 1H), 6.01 (dd, J = 17.6, 10.8 Hz, 1H), 5.91 (d, J = 10.1 Hz, 1H), 4.97 (m, 2H), 4.22 (s, 1H), 2.59 (s, 1H), 1.60 (s, 3H), 1.16 (s, 3H), 1.12 (s, 3H).


¹³C NMR (100 MHz, CDCl₃): 196.3, 146.8, 145.0, 128.2, 112.0, 93.1, 80.0, 40.4, 29.0, 24.1, 23.8.


HRMS (CI): Calcd. for $C_{11}H_{17}O_3$ (M+H)⁺: 197.1178, Found: 197.1178.

<u>FTIR</u> (neat): 3396, 3084, 2986, 2967, 1684, 1638, 1465, 1414, 1378, 1362, 1256, 1127, 1093, 1067, 918 cm⁻¹.

<u>**HPLC**</u> (Chiralcel AD-H column, Hexane:*i*-PrOH, 97:3, 0.5 mL/min, 210 nm): $t_{minor} = 14.8 \text{ min}$, $t_{major} = 25.1 \text{ min}$.

