Biophysical Journal, Volume 98

Supporting Material

On the role of acylation of transmembrane proteins

Diana Morozova and Matthias Weiss

On the role of acylation of transmembrane proteins – Supplement

Diana Morozova & Matthias Weiss

Cellular Biophysics Group, German Cancer Research Center, c/o BIOQUANT, Im Neuenheimer Feld 267, D-69120 Heidelberg, Germany

I. EQUILIBRATION TOWARDS STEADY STATE

Before monitoring the quantities of interest, all systems were equilibrated for 10^5 time steps. Within that time the thermostat quickly enforced a convergence of the system's temperature to the steady state value (Fig. S1) while the barostat enforced a tensionless membrane by leading the membrane edge length L towards its steady state value L_0 (Fig. S2). After the equilibration process the system length L was fixed and the barostat was switched off. For the remaining time series, the tilting angles ϕ of the transmembrane proteins did only show stationary fluctuations (Fig. S3).

FIG. S1 The system temperature (shown as the ratio of the inner energy U per bead and thermal energy, k_BT) quickly converged towards unity during the equilibration process.

FIG. S2 The membrane edge length L quickly converged towards its steady state value L_0 (here: $L_0 \approx 12.6r_0$) during the equilibration process.

FIG. S3 Left: The tilt angle $\phi(t)$ (here shown for HT_5H and HT_5H^A in black and red) only show stationary fluctuations after the equilibration process. Data for HT_5H^A have been shifted by 30° for better visibility. Right: The associated autocorrelation curves $C(\tau) = \langle (\phi(t) - \langle \phi \rangle)(\phi(t+\tau) - \langle \phi \rangle) \rangle_t$ show a rapid decay within much less than 10⁴ time steps and an asymptotic fluctuation around zero, hence supporting the notion that the system is equilibrated.

II. SUPPLEMENTAL RESULTS

FIG. S4: Tilt angles $\langle \phi \rangle$ for the indicated constructs as a function of the TMD length *n*. An increased tilting for growing hydrophobic mismatches is seen that is even enhanced upon acylation (cf. also Fig. 2b of the main text).

FIG. S5: The ratio of average tilt angles with and without acylation, $\langle \phi \rangle_A$ and $\langle \phi \rangle_0$, highlights an increased tilting of $(HT_nH)_7$ when the preferred angle between the TMD and the acyl chain (m = 4) is varied. Shown are data for $\theta_0 = 20^\circ, 40^\circ, 60^\circ, 80^\circ$ (filled circles, diamonds, squares, open circles).