
Supplementary material to “Fast Methods for

Spatially Correlated Multilevel Functional Data”

Ana-Maria Staicu,

Department of Statistics, North Carolina State University,

2311 Stinson Drive Raleigh, NC 27695-8203, USA email : staicu@stat.ncsu.edu,

Ciprian M. Crainiceanu,

Department of Biostatistics, Johns Hopkins University,

615 N. Wolfe St. Baltimore, MD 21205, USA. email : ccrainic@jhsph.edu

and

Raymond J. Carroll,

Department of Statistics, Texas A&M University,

College Station, TX 77843-3143, USA. email : carroll@stat.tamu.edu

Appendix A: Computational Complements

A.1 Matrix inversion

Let Σdr denote the variance of the
∑Mdr

i=1 Ndri×1 vector Ydr. Similarly, let ǫdr be the
∑Mdr

i=1 Ndri×1

vector of regression errors. Define ξdr = (ξdr,1, ..., ξdr,K1
)T and define ζdr = (ζdr1,1, ..., ζdr1,K2

, ζdr2,1, ..., ζdrMdr,K2
)T

Define Σξ = cov(ξdr) = diag(λ
(1)
1 , ..., λ

(1)
K1

), Σβ = diag(λ
(2)
1 , ..., λ

(2)
K2

) and Σζ = cov(ζdr) = I ⊗ Σβ .

Let BT
dr = (Φ

(1)T
dr1 , . . . , Φ

(1)T
drMdr

) be the
∑Mdr

i=1 Ndri×K1 matrix with elements {φ(1)
1 (t), ..., φ

(1)
K1

(t)},
where the arguments for t match those of the corresponding row of Ydr and let Bdr = diag(Φ

(2)
dr1, . . . , Φ

(2)
drMdr

)

be the
∑Mdr

i=1 Ndri × K2Mdr matrix of φ
(2)
l (t)’s. Let 1dri be the Ndri × 1 vector of ones, and

Edr = diag(1dr1, ..., 1drMdr
). Finally let Udr be the Mdr × 1 vector of {U(∆dri) : i = 1, . . .Mdr}
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and ΣU,dr be the Mdr × Mdr variance covariance matrix of Udr. Then our model is Ydr =

µdr +Bdrξdr + Bdrζdr + EdrUdr + ǫdr, where µdr is the vector obtained by stacking µd(tdrip) over p’s

and i’s. Clearly,

Σdr = cov(Ydr) = σ2
ǫ I + BdrΣξB

T
dr + BdrΣζB

T
dr + EdrΣU,drE

T
dr. (S.1)

Here we show how using matrix and determinant equalities used in (Harville, 1977) can simplify

both the inversion of and the determinant calculation of Σdr. For simplicity of notation only, since

there will be no confusion, we drop the indices and write Mdr = M and Ndri = N , etc. Thus, we

denote Φ
(1)
dr = Φ(1) and Φ

(2)
dri = Φ(2), E = Edr, Bdr = B and Bdr = B.

To invert Σdr, we repeatedly use the formula

(A−1 + CB−1CT)−1 = A − AC(CTAC + B)−1CTA. (S.2)

Define S = (σ2
ǫ I + BΣξB

T + BΣζB
T)−1. Then Σ−1

dr = (S−1 + EΣU,drE
T)−1 = S − SE(ETSE +

Σ−1
U,dr)

−1
E

TS. Note that E
TSE+Σ−1

U,dr is M ×M . To compute S without taking a large matrix in-

verse, denote by J = (σ2
ǫ I+BΣζB

T)−1. Then S = (J−1+BΣξB
T)−1 = J−JB(BTJB+Σ−1

ξ )−1BTJ.

The matrix BTJB +Σ−1
ξ is K1×K1, however, still J is the inverse of a MN ×MN matrix. Fortu-

nately, note that σ2
ǫ I+BΣζB

T = diag(σ2
ǫ IN +Φ(2)ΣβΦ(2)T , . . . , σ2

ǫ IN +Φ(2)ΣβΦ(2)T ), where IN is the

N×N dimensional matrix. Hence, J = diag
{
(σ2

ǫ IN + Φ(2)ΣβΦ(2)T )−1, . . . , (σ2
ǫ IN + Φ(2)ΣβΦ(2)T )−1

}
.

Using (S.2) once again, we write

(σ2
ǫ IN + Φ(2)ΣβΦ(2)T )−1 = σ−2

ǫ IN − σ−2
ǫ Φ(2)(Φ(2)T Φ(2) + σ2

ǫ Σ
−1
β )−1Φ(2)T .

Hence: (1) we can compute J with nothing more than K2 × K2 inversion, (2) we can compute S

with nothing more than K1×K1 and K2×K2 inversion and (3) we can compute Σ−1
dr with nothing

more than K1 × K1, K2 × K2 and M × M inversion.

A.2 Matrix determinant

Here is use the formula

|A + CBCT| = |A||I + CTA−1CB|. (S.3)
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Of course, |Σdr| = |S−1 + EΣU,drE
T| = |S−1||I + Σ

1/2
U,drE

TSEΣ
1/2
U,dr|, where I + Σ

1/2
U,drE

TSEΣ
1/2
U,dr is

M×M . However, |S−1| = |J−1||I +Σ
1/2
ξ BTJBΣ

1/2
ξ |, where I +Σ

1/2
ξ BTJBΣ

1/2
ξ is K1×K1. Finally,

remember that J−1 = σ2
ǫ I + BΣγB

T = diag(σ2
ǫ IN + Φ(2)ΣβΦ(2)T , . . . , σ2

ǫ IN + Φ(2)ΣβΦ(2)T ). Hence

|J−1| = det{σ2
ǫ IN + Φ(2)ΣβΦ(2)T }M , which involves the determinant of a N × N matrix.

It follows, that we can compute |Σdr| without large matrix inversions or the need to take

determinants of large matrices.
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Appendix B: Simulation Studies

B.1 Setup

Simulations studies were conducted to assess the practical performance of the proposed estimation

procedure. We generated data from model (3.2), where µd(t) ≡ 0, λ
(1)
1 = 2, λ

(1)
k = 0, k ≥ 2,

λ
(2)
ℓ = 2(1/2)ℓ−1 for l = 1, 2 while λ

(2)
ℓ = 0 for ℓ ≥ 3. We assumed that the covariance function at

each level is derived from the eigenfunctions φ
(1)
1 (t) =

√
2 cos(4πt) at level 1 and φ

(2)
1 (t) =

√
3(2t−1)

and φ
(2)
2 (t) =

√
5(6t2 − 6t + 1) at level 2. Note that the level 1 eigenfunctions and the level 2

eigenfunctions are not mutually orthogonal. We generated: (a) the FPC scores from ξdr,1 ∼
Normal(0, λ

(1)
1 ) and ζdri,l ∼ Normal(0, λ

(2)
ℓ ) for ℓ = 1, 2, (b) the spatial component from a Gaussian

process {Udr(∆) : ∆ ∈ [0, L]} with zero-mean, variance σ2
U = 1 and autocorrelation function ρ(∆)

to be described below, and (c) the measurement error from ǫdri(t) ∼ Normal(0, σ2
ǫ ). We used

D = 2 groups, Rd = 12 subjects per group, Mdr = 20 units per subject located at various locations

{∆dri : i = 1, . . .Mdr} given by two different designs to be discussed next and Ndri = 31 subunits

equally spaced in [0, 1]. The first design considers the locations to be independently and identically

generated from the uniform distribution on [0, L], where L = 15, 000 microns, the actual length of

the rat tissue in the colon carcinogenesis data. The second design uses the exact crypt locations

from the colon carcinogenesis data, see Figure 1 of Baladandayuthapani, et al. (2008). The actual
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locations used are reproduced in Figure S.1 For each design the Gaussian process was generated

according to three types of correlation functions: (a) ρ1(∆) = exp(−6|∆|/1000), (b) ρ2(∆) =

{2κ−1Γ(κ)}−1(∆/φ)κKκ(∆/φ), where Kκ(·) is the modified Bessel function (Stein, 1999) with

parameters κ = 1.5 and φ = 120, and (c) ρ3(∆) = 1
2
cos(∆/60)/(1 + |∆|/100) + 1

2
exp(−|∆|/800);

the correlation functions (b) and (c) were considered in Li, et al. (2007). The three correlation

functions differ in few aspects. First, the correlation range, in the sense discussed in Section 4.2,

is different for across the three functions: ρ1 and ρ2 decay to zero much faster than ρ3. Second,

the functions differ in the monotonicity behavior: ρ1 and ρ2 are monotone functions, while ρ3 is

not. Finally, the degree of smoothness at the value ∆ = 0 varies across the types of correlations

considered, with ρ2 being the smoothest function at ∆ = 0, and ρ3 not being differentiable at

∆ = 0.
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Figure S.1: Simulation study: the spatial location of the units used in the uniform design (left
panel) and in the colon carcinogenesis study design (right panel) for 12 subjects.

We generated 1000 data sets for each scenario, both with measurement error so that σ2
ǫ = 1

and with no measurement error, σ2
ǫ = 0. For each data set, we used the algorithm described in

Section 4 to estimate all the model components, including the number of principal components

and the eigenfunctions. The following subsections elaborate our findings.
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B.2 Spatial covariance estimation

Here we illustrate the performance of our proposed k-nearest neighbor estimator of the corre-

lation/covariance functions. The selection of k is important for the estimation accuracy of the

spatial covariance function. More precisely, large values of k lead to over-smooth covariance es-

timator, while smaller values of k favor a rougher estimator. We propose a penalized procedure

based on cross-validation prediction error to select k.

Our criterion is inspired by Li et al. (2007) who suggested a modification of the cross-validation

procedure of Diggle and Verbyla (1998), based on prediction error to choose the optimal bandwidth

for a kernel variogram estimator. Specifically, define the cross-validation prediction error by:

CV(k) :=

D∑

d=1

Rd∑

r=1

∑

∆dr,ij≤∆∗

∑

s,t

{K̂Y
r (t, s, ∆dr,ij) − ν(t, s, ∆dr,ij)}2, (S.4)

where ν(t, s, ∆dr,ij) = {Ydri(t, ∆dri)−Ydrj(t, ∆drj)}{Ydri(s, ∆dri)−Ydrj(s, ∆drj)}/2 and K̂Y
r (t, s, ∆dr,ij)

is the k-nearest neighbor estimator using neighboring size k, as defined in (4.1) with all the in-

formation on the rth subject left out. We propose to choose k as the value which minimizes

the CV(k), under the constraint that k2 ≥ c, where c ≥ 0 is a tuning parameter controlling

the smoothness of the covariance estimators. For c = 0, our optimization criterion simplifies to

minimizing CV(k), a criterion similar to the procedure proposed by Li et al. (2007). For large c,

the procedure encourages large values k, and therefore over-smooth covariance estimators. The

optimization problem can be written in the Lagrangian formulation as a penalized optimization

k̂ := argmink{CV (k) − λk2/2}, where λ > 0 is the Lagrange multiplier. This cross-validation

criterion uses the prechosen cutoff ∆∗ and assumes no covariance structure of the model.

The penalty λ and the smoothing parameter k are among the zeros of the derivative of the

function CVλ(k) := CV (k)−λk2/2. In practice we use a two-step procedure 1) first choose λ = λo

as the mean of the ratio of lagged differences and corresponding neighboring size {CVλ(k + 1) −
CVλ(k)}/k, for a large enough grid of k’s; and 2) select the value k which minimizes CVλo(k).

We found this simple criterion to work well in the simulations and application. In fact, in the

simulation study, we observed minimal differences in the bias and mean integrated square error of

the covariance estimator using values of k obtained with our optimization criterion versus other

reasonable choices of k. For example, similar accuracy results are reported if the neighboring size
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Figure S.2: The mean of the estimated correlation functions by k-nearest neighbor with positive
semi-definite adjustment (solid lines) along with their pointwise 90% confidence interval in the
case of the uniform design (top panel) and the CCS design (bottom panel) of the units location.
The true correlation functions (grey line) are ρ1 (left), ρ2 (middle) and ρ3 (right).

is fixed at k = 40 for all the simulation scenarios considered.

The spatial covariance estimator is not positive semi-definite, which could have serious impli-

cations when estimating the other components of the model. To correct this problem we followed

Li, et al. (2007) and used an adjustment based on the spectral density (Christakos, 1984). Our

simulations indicate that this correction decreases the variance of the covariance estimator. We

denote by ν̃(∆) the positive semi-definite adjusted estimator of ν(∆).

Figure S.2 gives the mean of the adjusted correlation estimators ρ̃(∆) = ν̃(∆)/ν̃(0) along

with their 90% pointwise confidence intervals, for the two designs of the unit locations. The

corresponding figure for the covariancefunctions is given in Figure S.5. Both the correlation

function and the covariance function (results not shown) are very nearly unbiased and suggest

somewhat smaller variability for the estimator in the uniform design than in the actual design in

the colon carcino genesis study. The estimated variance, σ̂2
U = ν̃(0), was also nearly unbiased for

the different designs and correlation functions; boxplots are available in Figure S.6.

In addition to variability we studied the integrated squared errors (ISE) of the correlation

and covariance functions estimators. As previously remarked by Li, et al. (2007) or Hall and
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Table S.1: Mean integrated squared error of the correlation and covariance estimators (positive

semi-definite adjusted), when σ2
ǫ = 1.

Method Uniform design CCS design

ρ1(∆) ρ2(∆) ρ3(∆) ρ1(∆) ρ2(∆) ρ3(∆)

Correlation 10.28 6.42 7.36 10.43 9.36 9.96

Covariance 8.74 7.57 9.57 10.87 11.97 16.05

Patil (1994), and as seen by us, the positive semi-definiteness adjustment of the covariance esti-

mator significantly improves the ISE. The numerical results agree with the above findings on the

variability of the estimators; see Table S.1.

B.3 Multilevel functional estimation

B.3.1 Eigenfunctions and eigenvalues

Our methodology performs remarkably well at recovering the true eigenfunctions, in all scenarios

we considered. For brevity, we present results only for two scenarios corresponding to the two

spatial designs for the unit locations and correlation function ρ1(∆). Figure S.3 shows the es-

timated eigenfunctions for the case when the noise standard deviation is σǫ = 1; similar results

are obtained in the case of no measurement error. The estimation methods correctly identify the

different levels of variation.

These results, and many other unreported simulation results, indicate that the estimation

quality of the true basis functions at each level is very little affected by the spatial structure

(units location sampling design or correlation function). Moreover, estimation accuracy varies

slightly with the choice of ∆∗ for the level 1 eigenfunctions. In practice we choose ∆∗ so that it is

reasonable to assume that observations at distance ∆∗ apart or larger are uncorrelated. For the

simulation study we used different values of ∆∗ corresponding to different correlation types. In

the case of ρ1 and we took ∆∗ = 1, 000 and the estimated eigenfunctions are presented in Figure

S.3.
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Figure S.3: The estimated (black) versus the true (grey) eigenfunctions at level 1 and level 2 in
1000 simulations, when the data uses crypt locations given by a uniform design (top panel) and the
colon cancer design (bottom panel), the correlation function ρ1(∆) and an error variance σ2

ǫ = 1.

We now turn to the estimation of the eigenvalues. The presence of measurement error does

not affect the eigenvalue estimation in any of the scenarios considered. As in the estimation of

eigenfunctions, the estimated eigenvalues are very little affected by the spatial design or by the

correlation structure of the spatial process involved. There are small biases in the estimated

eigenvalues, and large variance for the eigenvalues estimates at level 1; see Figure S.7. This is not

surprising, given the relatively moderate sample size used. Further simulation studies, unreported

here, indicate that these small problems disappear with increased sample size.

B.3.2 Functional Principal Component scores

FPC scores are important because they provide level-specific functional predictions; for example,

in our application they quantify the effect of the cell relative depths on the level of the biological

marker p27. Here we present the root mean square error of the estimated FPC scores for all

scenarios considered, when the measurement error is σ2
ǫ = 1. Table S.2 summarizes the results

based on 1000 simulations.

Interestingly, the type of spatial correlation has minimal effect on root mean squared error.
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Table S.2: Root mean squared error of the FPC scores for different correlation types and design

scenarios, when σ2
ǫ = 1.

FPC scores Uniform design CCS design

ρ1(∆) ρ2(∆) ρ3(∆) ρ1(∆) ρ2(∆) ρ3(∆)

Level 1: component 1 0.405 0.405 0.405 0.406 0.406 0.406

Level 2: component 1 0.227 0.227 0.228 0.228 0.228 0.230

Level 2: component 2 0.222 0.222 0.224 0.225 0.225 0.229

Similar patterns of results are obtained in the case without measurement error: the main difference

being that the root mean squared error for the functional principal component scores is of smaller

magnitude; for instance the root mean squared error is equal to 0.403 for the estimated components

at level 1 and to 0.147, 0.148 for the estimated components at level 2, in the case of colon

carcinogenesis design for the unit locations and correlation ρ1(∆).

Finally, we compare the performance of the estimated noise variance σ2
ǫ across the different sce-

narios. The estimates have negligible bias for the two unit locations designs and three correlation

functions. Figure S.4 displays the boxplots of σ̂2
ǫ .
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Appendix C: Additional Figures

0 100 200 300 400 500

0.0
0.5

1.0

0 100 200 300 400 500

0.0
0.5

1.0

0 500 1000 1500 2000

0.0
0.5

1.0

0 100 200 300 400 500

0.0
0.5

1.0

0 100 200 300 400 500

0.0
0.5

1.0

0 500 1000 1500 2000

0.0
0.5

1.0

ν̃(∆)ν̃(∆)ν̃(∆)

ν̃(∆)ν̃(∆)ν̃(∆)

∆ (units distance)∆ (units distance)∆ (units distance)

∆ (units distance)∆ (units distance)∆ (units distance)

Figure S.5: Simulation study: the mean of the adjusted estimates of the covariance functions
along with their pointwise 90% confidence interval in the case of the uniform design (top panel)
and the CCS design (bottom panel) of the units location. The true covariance functions (blue
line) are ν1 = σ2

Uρ1 (left), ν2 = σ2
Uρ2 (middle) and ν3 = σ2

Uρ3 (right); the estimates are obtained
using k-nearest neighbor with positive semi-definite adjustment (solid lines).
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Figure S.8: The estimated mean functions for the 4 diet groups by: (left panel) penalized spline
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