Supporting Information:

Reductive Coupling of Nitrogen Monoxide (•NO) Facilitated by Heme/Copper Complexes

Jun Wang,[†] Mark P. Schopfer,[†] Simona C. Puiu,[†] Amy A. N. Sarjeant[†] and Kenneth D. Karlin^{†‡} *

[†] Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218 [‡] Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea

Correspondence: karlin@jhu.edu

Contents:

Figure S1. EPR spectrum (77 K) of $[(tmpa)Cu^{II}(CH_3CN)](ClO_4)_2$ in acetone.

Figure S2. UV-Vis spectrum of $(tmpa)Cu^{II}(NO_2)PF_6$ in various solvents at RT.

Figure S3. EPR spectrum (77 K) of $(\text{tmpa})\text{Cu}^{II}(\text{NO}_2)\text{PF}_6$ in CH₂Cl₂.

Figure S4. UV-Vis spectrum of $(F_8)Fe(NO)_2$ titration with $(F_8)Fe^{II}$ in THF.

Figure S5. Variable-temperature ¹H-NMR spectra of (F_8) Fe(NO) in CD₂Cl₂.

Figure S6. Variable-temperature ²H-NMR Spectra of $(F_8-d_8)Fe(NO)$ in CH₂Cl₂.

Figure S7. ¹H-NMR spectrum of (F_8) Fe(NO)₂ at -80 °C in CD₂Cl₂ and acetone- d_8 , as well as spectra of the complex(es) observed upon warming.

Figure S8. Expanded EPR spectrum of the product mixture from the reaction of $(F_8)Fe(NO)_2 + [(tmpa)Cu^{I}(MeCN)]^+$, i.e. $(F_8)FeNO$, 1/3 $[(tmpa)Cu^{II}(NO_2)]^+$ and unreacted 2/3 $[(tmpa)Cu^{I}(solvent)]^+$.

Figure S9. UV-Vis spectra of (F_8) Fe^{III}SbF₆ and (F_8) Fe^{III}Cl in CH₂Cl₂.

Figure S10. Variable-temperature ¹H-NMR spectra of (F₈)Fe^{III}SbF₆ in CD₂Cl₂.

Figure S11. Gas chromatography of the head space of the product mixture from the reaction of $(F_8)Fe(NO)_2 + [(tmpa)Cu^I(MeCN)]^+$ in the presence of acid.

Figure S1. EPR spectrum (77K) of $[(tmpa)Cu^{II}(CH_3CN)](ClO_4)_2$ in acetone $(g_{\perp} = 2.22, g_{\parallel} = 2.02, A_{\perp} = 105 \text{ G}, A_{\parallel} = 71 \text{ G}).$

Figure S2. UV-Vis spectrum (RT) of [(tmpa)Cu(NO₂)]PF₆ in CH₂Cl₂ (**blue**, $\lambda_{max} = 301, 415$ nm) and in CH₃CN (**red**, $\lambda_{max} = 297, 406$ nm).

Figure S3. EPR spectrum (77 K) of $[(tmpa)Cu(NO_2)]PF_6$ in CH_2Cl_2 ($g_{\perp} = 2.21$, $g_{\parallel} = 2.01$, $A_{\perp} = 84$ G, $A_{\parallel} = 80$ G).

Figure S4. UV-Vis spectrum (in THF) of (F₈)Fe(NO)₂ titration with (F₈)Fe^{II} in THF. (F₈)Fe^{II} (**blue**, $\lambda_{max} = 422 \text{ nm}$ (Soret), 542 nm) at -78 °C; (F₈)Fe(NO)₂ (**red**, $\lambda_{max} = 410$ (Soret), 540 nm) was formed after bubbling excess •NO_(g) through the solution and vacuum/purge cycles to remove excess •NO_(g) at -78 °C; the mixture (**light blue**, $\lambda_{max} = 410$, 422, 540 nm) after an equal volume solution of (F₈)Fe^{II} was added at -78 °C; the product (**purple**, $\lambda_{max} = 410$ (Soret), 546 nm) after warming to RT and re-cooling to -78 °C.

Figure S5. Variable-temperature ¹H-NMR spectra of (F_8)Fe(NO) in CD₂Cl₂. From top to bottom, the temperatures at which the spectrum was recorded are 20 °C, -20 °C, -40 °C, -60 °C and -80 °C.

Figure S6. Variable-temperature ²H-NMR spectra of $(F_8-d_8)Fe(NO)$ in CH₂Cl₂. The temperatures at which the spectrum was recorded are 20 °C, -20 °C, -40 °C, -60 °C and -80 °C, from top to bottom.

Figure S7. ¹H-NMR spectra of (F₈)Fe(NO)₂. (A) in CD₂Cl₂, **Top**: at -80 °C; **Middle**: after warming to -60 °C; **Bottom**: after warming to -40 °C. (B) in acetone- d_8 , **Top**: at -80 °C; **Middle**: after warming to -60 °C; **Bottom**: after warming to -40 °C.

Figure S8. Expanded view of the EPR spectrum of the product mixture from the reaction of $(F_8)Fe(NO)_2 + [(tmpa)Cu^I(MeCN)]^+$, i.e. complexes $(F_8)FeNO$, 1/3 $[(tmpa)Cu^I(NO_2)]^+$ and unreacted 2/3 $[(tmpa)Cu^I(solvent)]^+$.

Figure S9. UV-Vis Spectrum (RT) of $[(F_8)Fe^{III}]SbF_6$ (blue, λ_{max} = 394 (Soret), 512 nm) and $(F_8)Fe^{III}Cl$ (red, λ_{max} = 370, 411 (Soret), 503, 639 nm) in CH₂Cl₂.

and -80 °C.

Figure S11. Gas chromatography (GC) of the head space of the product mixture, obtained from the reaction of $(F_8)Fe(NO)_2$ with $[(tmpa)Cu^I(MeCN)]^+$ plus Acid. It was performed on a Varian CP-3800 instrument equipped with a 1041 manual injector, electron conductivity detector, and a 25 m 5 Å molecular sieve capillary column. When the oven temperature is 200 °C and the flow rate equals to 8 mL/min, the retention time (min) are 5.260 for N₂O, 0.801 for small amount of air in the syringe needle that was used for gas injection, 1.000 and 1.379 for trace impurities.