Small Molecular, Macromolecular and Cellular Chloramines React with Thiocyanate to Give the Human Defense Factor Hypothiocyanite

Bheki A. Xulu and Michael T. Ashby*

Department of Chemistry and Biochemistry, University of Oklahoma, 620 Parrington Oval, Norman, OK 73019

Submitted to Bichemistry. December 6, 2009, E-mail: mashby@ou.edu

SUPPORTING INFORMATION

Mathematica code used to fit the data of Figure 3 3
Figure S1. Percent yield of OSCN ⁻ for TauCl (80 μ M) oxidation as a function of [SCN ⁻] (0.5 – 5.0 mM)
Figure S2. Kinetic trace for the pseudo-first-order reaction of TauCl (0.5 mM)
with SCN ⁻ (5 mM)
Figure S3. Kinetic trace for the pseudo-first-order reaction of TauCl (208 μ M)
with TNB (16 $\mu M)$ $$
Figure S4. Kinetic trace for the pseudo-first-order reaction of OSCN ⁻ (4 μ M, produced
by the LPO-catalyzed oxidation of SCN $^{\circ}$ by $H_2O_2)$ with TNB (56 $\mu M)$ $~$ 7
Figure S5. Kinetic trace for the pseudo-first-order reaction of OSCN ⁻ (5.5 μ M, produced by
the uncatalyzed oxidation of SCN $^{\mbox{-}}$ by TauCl) with TNB (56 $\mu M)$ $\ $
Figure S6. Kinetic trace for the pseudo-first-order reaction of Ub*Cl (6 μ M) with
TNB (68 μM)
Figure S7. Kinetic trace for the pseudo-first-order reaction of OSCN ⁻ (produced by the reaction
of Ub*Cl (6.75 μ M) with SCN ⁻ (0.5 mM) for 20 minutes) with TNB (58.66 μ M)10
Figure S8. Kinetic trace for the pseudo-first-order reaction of Chlorinated E. Coli (6 μ M) with
TNB (60.8 μM)
Figure S9. Kinetic trace for the pseudo-first-order reaction of OSCN ⁻ (produced by the reaction

of chlorinated <i>E. Coli</i> (6 μM) with SCN ⁻ (2.5 mM) for 12 minutes)			
with TNB (60.8 μ M)		12	

Mathematica code used to fit the data of Figure 3.

Do[

Clear[h, nsteps, TauCl, SCN, OSCN, Prod, k1, k2, data];

```
SCN = 0.01:
totaltime = 5;
h = 0.01;
nsteps = Round[totaltime/h];
k1 = 100;
k2 = 5000:
TauCl[0] = TauClZero;
OSCN[0] = 0;
Prod[0] = 0;
Do[
     TauCl[n] = TauCl[n - 1] - h*k1*TauCl[n - 1]*SCN,
     OSCN[n] = OSCN[n - 1] + h*k1*TauCl[n - 1]*SCN - h*k2*TauCl[n - 1]*OSCN[n - 1],
     Prod[n] = Prod[n - 1] + h*k2*TauCl[n - 1]*OSCN[n - 1]
     },
{n, 1, nsteps, 1}] // N;
data = Table[{TauCl[n], OSCN[n], Prod[n]}, {n, 0, nsteps}];
(* Include the following to plot concentration vs. time
TableForm[data];
datatr=Transpose[data];
TauClt=ListPlot[datatr[[1]], DisplayFunction -> \
Identity, PlotStyle->Red]
OSCNt=ListPlot[datatr[[2]], DisplayFunction -> \
Identity.PlotStyle->Blue]
Prodt=ListPlot[datatr[[3]], DisplayFunction -> \
Identity, PlotStyle->Green]
Show[{ TauClt, OSCNt, Prodt}, DisplayFunction -> $DisplayFunction]
*)
Print["[TauCl]0 = ", TauClZero];
Print["Final Concentration OSCN = ", OSCN[nsteps - 1]];
Print["Percent Yield = ", 100*OSCN*[nsteps - 1]/TauClZero];
```

{TauClZero, 0.00025, 0.002, 0.00005}]

Figure S1. UV-vis spectra obtained for the reactions of TauCl (80 μ M) with SCN⁻ (0.5-5.0 mM) in phosphate buffer (100 mM, pH 7.4). The spectra were recorded with a 1 meter fiber optic cell. The chemical yield of OSCN⁻ is indicated versus [SCN⁻]₀.

Figure S2. Observed absorbance decrease at 250 nm for the reaction of TauCl (0.5 mM) with SCN⁻ (5 mM) at pH 7.4 and I = 1.0 M. A first-order fit (red) and 10% of the data (black circles) are illustrated.

Figure S3. Observed absorbance decrease at 412 nm for the reaction of TauCl (208 μ M) with TNB (16 μ M) at pH 7.4 and I = 1.0 M. A first-order fit (red) and 2% of the data (black circles) are illustrated.

Figure S4. Observed absorbance decrease at 412 nm for the reaction of OSCN⁻ (4 μ M, produced by the LPO-catalyzed oxidation of SCN⁻ by H₂O₂) with TNB (56 μ M) at pH 7.4 and I = 1.0 M. A first-order fit (red) and 20% of the data (black circles) are illustrated.

Figure S5. Observed absorbance decrease at 412 nm for the reaction of OSCN⁻ (5.5 μ M, produced by the uncatalyzed oxidation of SCN⁻ by TauCl) with TNB (56 μ M) at pH 7.4 and I = 1.0 M. A first-order fit (red) and 10% of the data (black circles) are illustrated.

Figure S6. Observed biexponential (decrease-decrease) absorbance decrease at 412 nm for the reaction of Ub*Cl (6 μ M, based upon the amount of HOCl used) with TNB (68 μ M) at pH 7.4 and I = 1.0 M. A biexponential fit (red) and 10% of the data (black circles) are illustrated.

Figure S7. Observed absorbance decrease at 412 nm for the reaction of Ub*Cl (6.75 μ M) with SCN⁻ (0.5 mM) for 20 minutes, followed by reaction with TNB (58.66 μ M) at pH 7.4 and I = 1.0 M. A first-order fit (red) and 10% of the data (black circles) are illustrated.

Figure S8. Absorbance decrease at 412 nm for the reaction of chlorinated *E. coli* (6 μ M, based upon the HOCl used) with TNB (60.8 μ M) at pH 7.4 and I = 1.0 M. A biexponential fit (red) and 10% of the data (black circles) are illustrated. The kinetic trace is apparently multi-phasic.

Figure S9. Observed absorbance decrease at 412 nm for the reaction of chlorinated *E. coli* (6 μ M, based upon the HOCl used) with SCN⁻ (2.5 mM) for 12 minutes, followed by reaction with TNB (58.66 μ M) at pH 7.4 and I = 1.0 M. A first-order fit (red) and 50% of the data (black circles) are illustrated.