SUPPLEMENTAL MATERIAL

Supplemental figure legends

Figure S1. (A) The levels of the truncated Dcp2 proteins. Wild-type cells (yRP840) expressing Dcp2 (1-300), Dcp2 (1-247), Dcp2 (102-300) or Dcp2 (102-247)-GFP from the plasmid pRP1892, pRP1893, pRP1904 or pRP1905 were used. pRP250 was used as a control vector (no GFP). Cells were cultured as described in the figure legend to Fig. 1C. Western blot analysis was performed as described in the figure legend to Fig. 1C. Arrowheads indicate GFP-tagged proteins. Asterisks indicate non-specific bands. (B) Localization of truncated Dcp2 proteins. The same strains as described in the figure legend to Fig. 1B. Bar, 5 μ m.

Figure S2. (A) Coomassie blue-stained SDS-PAGE of recombinant purified proteins used in *in vitro* decapping assays. Representative decapping time courses for (B) 50 nM GB1-Dcp1:Dcp2 (1-245), (C) 50 nM GB1-Dcp1:Dcp2 (1-245) with 500nM Edc3, (D) 50 nM GB1-Dcp1:Dcp2 (1-315), and (E) 50 nM GB1-Dcp1:Dcp2 (1-315) with 500nM Edc3.

Figure S3. (A) The *RPS28B* mRNA was analyzed in strains lacking C-terminal regions of the chromosomal *DCP2* gene (yRP2749, yRP2745, yRP2746, yRP2751, yRP2752 and yRP2753). Cells were grown in YP media containing 2% galactose to mid-log phase at 24°C. The mRNA level normalized to the *SCR1* RNA level relative to the normalized mRNA level in yRP2749 (full-length Dcp2 without tag) was indicated below each lane. The average and standard deviation of values obtained with three independent strains of each genotype are shown. (B) The protein levels of Dcp2 (1-300)-3HA and Dcp2 (1-247)-3HA. Cells of the strains yRP2745, yRP2746, yRP2752 and yRP2753 were grown in YP media containing 2% galactose to mid-log phase at 24°C. Anti-HA antibody and anti-Pgk1 antibody were used in Western blot to detect HA-tagged proteins and the endogenous Pgk1 proteins as a loading control. (C) Analysis of the *YRA1* pre-mRNA. The

same RNA samples as described in the figure legend to Fig. S3A were used. The *YRA1* pre-mRNA level normalized to the *SCR1* RNA level relative to the normalized pre-mRNA level in yRP2749 (full-length Dcp2 without tag) was indicated below each lane. (D) The *MFA2pG* mRNA was analyzed in the same strains as described in the figure legend to Fig. S3A. Cells were grown in YP media containing 2% galactose to mid-log phase at 24°C to express the *MFA2pG* mRNA from the *GAL* promoter. The ratio of the full-length mRNA (FL) to the decay intermediate (pG) relative to the ratio in yRP2749 (full-length Dcp2 without tag) was indicated below each lane. The average and standard deviation of values obtained with three independent strains of each genotype are shown. (E) Growth phenotype of strains lacking C-terminal regions of the chromosomal *DCP2* gene (yRP2749, yRP2745, yRP2746, yRP2751, yRP2752 and yRP2753) was analyzed by serial dilution spotting. Cells were incubated on YP media containing 2% glucose for 2 days at 24°C.

Figure S4. (A) The *RPS28B* mRNA was analyzed in the strains yRP2793 ($dcp2\Delta$) and yRP2794 ($dcp2\Delta edc3\Delta$) expressing the full-length or truncated Dcp2 protein from the plasmid pRP1207, pRP1453, pRP1450 or pRP1449. pRP10 was used as a control vector. The mRNA level normalized to the *SCR1* RNA level relative to the normalized mRNA level in yRP2793 ($dcp2\Delta$) expressing full-length Dcp2 was indicated below each lane. The average and standard deviation of values obtained with three independent strains of each genotype are shown. (B) The *RPS28B* mRNA was analyzed in the strains yRP2793 ($dcp2\Delta$) and yRP2794 ($dcp2\Delta edc3\Delta$) expressing Dcp2 (1-300)-GFP or Dcp2 (1-300) L255A K256A-GFP from a plasmid pRP1892 or pRP1896. The mRNA level normalized to the *SCR1* RNA level relative to the normalized mRNA level in yRP2793 ($dcp2\Delta$) expressing wild-type Dcp2 was indicated below each lane.

Figure S5. (A) Growth phenotype of the same strains as described in the figure legend to Fig. S4A was analyzed by serial dilution spotting. Cells were incubated on SC media containing 2% glucose for 2 days at 30°C. (B) Analysis of the *MFA2pG* mRNA. The same RNA samples described as in the figure legend to Fig. S4A were used. The ratio of the full-length mRNA (FL) to the decay intermediate (pG) relative to the ratio in yRP2793

 $(dcp2\Delta)$ expressing full-length Dcp2 was indicated below each lane.

Figure S6. (A) Growth phenotype of the same strains as described in the figure legend to Fig. S4B was analyzed by serial dilution spotting. Cells were incubated on SC media containing 2% glucose for 2 days at 30°C. (B) Analysis of the *MFA2pG* mRNA. The same RNA samples described as in the figure legend to Fig. S4B were used. The ratio of the full-length mRNA (FL) to the decay intermediate (pG) relative to the ratio in yRP2793 (*dcp2* Δ) expressing wild-type Dcp2 was indicated below each lane.

Figure S7. Deletion of the region 248-300 of Dcp2 shows a synthetic effect with the dcp1-2 mutation. Cells of the strains yRP2745 (*DCP1* $dcp2(\Delta 301-970)$), yRP2746 (*DCP1* $dcp2(\Delta 248-970)$), yRP2747 (dcp1-2 $dcp2(\Delta 301-970)$) and yRP2748 (dcp1-2 $dcp2(\Delta 301-970)$) were grown in YP media containing 2% galactose to mid-log phase at 24°C, which is permissive for the dcp1-2 temperature sensitive allele. The ratio of the full-length mRNA to the poly(G) decay intermediate in each strain relative to the ratio in the *DCP1* $dcp2(\Delta 301-970)$ strain is indicated. Three independent strains of each genotype were analyzed.

Table S1. Oligonucleotides used in this study

Number	Sequences	Description	Sources
oRP1440	CGGGAGCTCTCGTCGTAAGGCTGACACTGCA	To create pRP1891, pRP1892, pR1893, pRP1896, pRP1903, pRP1904, pRP1905, pRP1906, pRP1907, pRP1908, pRP1909 and pRP1910	This study
oRP1458	CAGTCGCGATGTCTAATGCGAAGGTACTTTTATTTTTTC AGAT	To create pRP1903	This study
oRP1441	GGGGATCCGCTTCCTATGCAAAATGCTTAATAATTCATTA GACC	To create pRP1891	This study
oRP1442	GGGGATCCGCTCTTGGCTCGAGGGTACCTGT	To create pRP1892, pRP1896, pRP1904, pRP1906, pRP1907, pRP1908, pRP1909 and pRP1910	This study
oRP1443	GGGGATCCGCAATTGATCTTCATTTTTTATTTGCCTCTGA TGCCT	To create pRP1893 and pRP1905	This study
oRP1459	ACATCGCGAATGAATGAAGATCAATTGAAATCCTATGCG GAA	To create pRP1894	This study
oRP1460	ACATCGCGAATGCCTTCAATATTTCCATCTCTTTCTGAAC CG	To create pRP1895	This study
oRP1444	CAGTCGCGACATATGTCACTGCCGCTACGACA	To create pRP1897 and pRP1898	This study
oRP1445	CAGACGGGATCCTCATCACTCTTGGCTCGAGGGTACCTG T	To create pRP1897	This study
oRP1446	CAGACGGGATCCTCATCACAATTGATCTTCATTTTTATT TGCCTCTGATGCCT	To create pRP1898	This study
oRP1447	AATCCTATGCGGAAGAACAAGCGGCATTGTTGTTGGGTA TCACTAA	To create pRP1896	This study
oRP1448	TTAGTGATACCCAACAACAATGCCGCTTGTTCTTCCGCAT AGGATT	To create pRP1896	This study
oRP1465	ATCAATTGAAATCCTATGCGGCAGAACAATTGAAATTGT TGTT	To create pRP1908	This study
oRP1466	AACAACAATTTCAATTGTTCTGCCGCATAGGATTTCAATT GAT	To create pRP1908	This study
oRP1467	TCACTAAGGAGGAGCAGATTGCTCCCGGTAGAGAGTTGC TGAA	To create pRP1909	This study

oRP1468	TTCAGCAACTCTCTACCGGGAGCAATCTGCTCCTCCTTAG TGA	To create pRP1909	This study
oRP1469	AGGAGCAGATTGATCCCGGTGCAGAGGCGCTGAATATGT TACATACTGC	To create pRP1906	This study
oRP1470	GCAGTATGTAACATATTCAGCGCCTCTGCACCGGGATCA ATCTGCTCCT	To create pRP1906	This study
oRP1471	GGAATTCGAGCTCCAAGATCTAGTGTTATACGTTTTATAG ACACACTGTAAATG	To create pRP1454	This study
oRP1472	TGATATCGAATTCCTGCAGCCCGGGGGGATCCACTAGTCC GCAGATAAATTGACGCACC	To create pRP1454	This study
oRP1473	CGAATTGGAGCTCCACCGCGGTGGCGGCCGCTCTAGACG TCGTAAGGCTGACACTGCAGAAG	To create pRP1449, pRP1450 and pRP1453	This study
oRP1474	CGGGATCCAGATCTTTCACTCTTGGCTCGAGGGTACCTGT CCGTTGGA	To create pRP1453	This study
oRP1475	CGGGATCCAGATCTTTCACAATTGATCTTCATTTTTATTT GCCTCTG	To create pRP1450	This study
oRP1476	CGGGATCCAGATCTTTCACATGGAATTAATCAGATAATA CTTGATATT	To create pRP1449	This study
oRP1449	GTTAAGGCATCAGAGGCAAATAAAAAATGAAGATCAATT GTGAGGCGCGCCACTTCTAAA	To create yRP2746 and yRP2748	This study
oRP1450	TAATGCGGTCTCCAACGGACAGGTACCCTCGAGCCAAGA GTGAGGCGCGCCACTTCTAAA	To create yRP2745 and yRP2747	This study
oRP1451	CATTTACAGTGTGTCTATAAAACGTATAACACTTATTCTT GAATTCGAGCTCGTTTAAAC	To create yRP2745, yRP2746, yRP2747, yRP2748, yRP2749, yRP2751, yRP2752 and yRP2753	This study
oRP1461	TTCAGGGTCTAATGAATTATTAAGCATTTTGCATAGGAA GTGAGGCGCGCCACTTCTAAA	To create yRP2749	This study
oRP1462	GTTAAGGCATCAGAGGCAAATAAAAAATGAAGATCAATT GCGGATCCCCGGGTTAATTAA	To create yRP2753	This study
oRP1463	TTCAGGGTCTAATGAATTATTAAGCATTTTGCATAGGAA GCGGATCCCCGGGTTAATTAA	To create yRP2751	This study
oRP1464	TAATGCGGTCTCCAACGGACAGGTACCCTCGAGCCAAGA GCGGATCCCCGGGTTAATTAA	To create yRP2752	This study
oRP1452	GCCCAAGCCTCTTAATGATGG	To verify integration in the <i>DCP2</i> locus	This study
oRP1453	CGGTGATGTCAAATTGTGTTATGG	To verify integration in the <i>DCP2</i> locus	This study
oRP1454	ATGGGCTCGCGATAATGTCG	To verify integration with the kanMX casette	This study

oRP1455	GCGATTCCGACTCGTCCAAC	To verify integration with the kanMX casette	This study
oRP140	ATATTGATTAGATCAGGAATTCC	Probe for <i>MFA2pG</i> mRNA	Caponigro and Parker, 1995
oRP100	GTCTAGCCGCGAGGAAGG	Probe for SCR1 RNA	Caponigro et al., 1993
oRP1300	GCTTTCTGTGCTTACCGATACGACCTTTACCGG	Probe for <i>CYH2</i> mRNA	This study
oRP1456	TTAGCAGGCTTTTCTCTCTTTGGTT	Probe for <i>YRA1</i> mRNA	This study
oRP1439	CATCATTGAGTATTTCTACGCATTTG	Probe for <i>RPS28B</i> mRNA	This study
oRP831	ACTTAGAGCTCACTAGTGCGGCCGCGTCGTAAGGCTGAC ACTGC	To verify the sequence of <i>DCP2</i>	T. Dunckley
oRP842	GAGATTAATTCCGATGGGG	To verify the sequence of <i>DCP2</i>	T. Dunckley
oRP843	CATCATTAAGAGGCTTGGGC	To verify the sequence of <i>DCP2</i>	T. Dunckley
oRP844	TTGTTGTTGATGATAACCCG	To verify the sequence of <i>DCP2</i>	T. Dunckley
oRP845	CCACATTGATAAGGGTCTC	To verify the sequence of <i>DCP2</i>	T. Dunckley
oRP846	CGATAAATCTTCATTCGGAC	To verify the sequence of <i>DCP2</i>	T. Dunckley
oRP864	CCTTCTGTTGGTTGTGTTCTCC	To verify the sequence of <i>DCP2</i>	T. Dunckley
oRP865	CGGACAGGTACCCTCGAGCCAAGAGC	To verify the sequence of <i>DCP2</i>	T. Dunckley
oRP1457	CCATGATGAGACCCTTATCAATG	To verify the sequence of <i>DCP2</i>	T. Dunckley
oRP1477	GAAGGATTCCACAGTTGTTTAATCCTCC	To verify the sequence of <i>DCP2</i>	This study
oRP1478	CCTTCACCCTCTCCACTGACAG	To verify sequence uptream of the GFP gene	This study

Caponigro, G., and R. Parker. 1995. Multiple functions for the poly(A)-binding protein in mRNA decapping and deadenylation in yeast. *Genes Dev.* 9:2421-2432

Caponigro, G., D. Muhlrad, and R. Parker. 1993. A small segment of the MAT alpha 1 transcript promotes mRNA decay in *Saccharomyces cerevisiae*: a stimulatory role for rare codons. *Mol. Cell Biol.* 13: 5141-5148

(B)

.

