
 

Methods 

TiO2 nanotube fabrication.  TiO2 nanotube arrays were formed via anodic oxidation in an 

electrolytic solution containing 0.2M Sodium Citrate Tribasic, 1M Sodium Hydrogen Sulfate, and 0.1M 

Potassium Fluoride, with Sodium Hydroxide added to adjust the pH of the solution.  Titanium foil 

(0.25mm thick, 99.7% purity, Alfa Aesar) were anodized at a constant DC potential for 17 hours in a 

two-electrode electrochemical cell with a platinum foil as the counter electrode.  The average length and 

pore diameter of the nanotubes were scaled by varying the pH of the electrolyte and the DC potential 

during anodization.  Nanotubes 1 µm in length with an average pore diameter of 30 nm were prepared 

by anodization using 10 V bias in the 4 pH electrolyte.  Nanotubes 1 µm in length with an average pore 

diameter of 100 nm were prepared by anodization using 20 V bias in a 2 pH electrolyte.  All samples 

were subsequently rinsed in DI water and annealed at a temperature of 500 °C in oxygen ambient to 

crystallize the nanotubes.  Heating and cooling rates of 1 °C/min were used with a dwell time of 6 hours.  

Surfaces were sterilized with 70% ethanol and UV prior to use in tissue culture. 

 

HAEC and HAoSMC culture.  Primary human aortic endothelial cells (HAECs) and primary human 

vascular smooth muscle cells (HAoSMCs) (Lonza, Walkersville, MD) were cultured according to 

manufacturer’s instructions using Lonza’s HAEC and HAoSMC complete media.  The cells were 

cultured in a humidified 95% air/5% CO
2 
incubator at 37°C.  Cells used in this experiment were 

passaged less than 15 times. 

RNA isolation for microarray.  HAECs and HAoSMCs were seeded at 5 x 104 cells/cm2 on flat and 

nanotube substrates.  Cells were harvested after 24 hours using Qiagen’s RNeasy kit (Valencia, CA) 

according to manufacturer’s instructions.  Concentration and purity of isolated RNA was measured 

using a NanoDrop spectrophotometer (Thermo Fisher Scientific, Wilmington, DE) 



 

Microarray.  Sample preparation, labeling, and array hybridizations were performed according to 

standard protocols from the UCSF Shared Microarray Core Facilities and Agilent Technologies 

(http://www.arrays.ucsf.edu and http://www.agilent.com). Total RNA quality was assessed using a Pico 

Chip on an Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA). RNA was amplified and 

labeled with Cy3-CTP using the Agilent low RNA input fluorescent linear amplification kits following 

the manufacturers protocol. Labeled cRNA was assessed using the Nanodrop ND-100 (Thermo Fisher 

Scientific), and equal amounts of Cy3 labeled target were hybridized to Agilent whole human genome 

4x44K Ink-jet arrays. Hybridizations were performed for 14 hrs, according to the manufacturer’s 

protocol. Arrays were scanned using the Agilent microarray scanner and raw signal intensities were 

extracted with Feature Extraction v10.1 software.  A total of 19 arrays were hybridized and represent 4 

biological replicates for each group (with the exception of group VSMC-NT30, which has 3 biological 

replicates). 

Differential expression analysis.  The following terminology is used to discuss the results of our 

analysis: 

M – log2 (S2/S1). Log 2 based fold change of  entity of interest. M=1 means two-fold increase in S2 

compared to S1. M=0 means equal expression. M=-1 means 2 fold down-regulation.  

aveA–average log2 based intensity of the same probe across all arrays, a proxy for gene expression level 

B - log posterior odds ratios, ratio between the probability that a given gene is differentially expressed (DE) 

over the probability that a given gene is not differentially expressed; B≥0 means equal or more probability 

that a gene is DE than non-DE.1  

FDR – False Discovery Rate, which is the percentage of falsely declared DE genes among the set of declared 

DE genes. A FDR cutoff of 0.01 indicates that 1% of the declared DE genes are expected to false positives.2 

http://www.arrays.ucsf.edu/
http://www.agilent.com/


 

AdjP – Adjusted p-value, which controls for family-wise error rates, the probability of having more than one 

false discovery. An adjusted p-value cutoff of 0.01 indicates that the declared DE set has 1% chance to have 

more than one false positive.  

 

Raw log-intensities are normalized using quantile normalization method that is proposed by Bolstad et 

al.3 No background subtraction was performed, and the median feature pixel intensity was used as the 

raw signal before normalization.   

A one-way ANOVA model is formulated and specific contrasts are formulated to examine the two 

pairwise comparisons of interest. Moderated t-statistic, B statistic, false discovery rate and p-value for 

each gene were obtained. Adjusted p-values were produced by the method proposed by Holm.4 All 

procedures were carried out using functions in the R package limma in Bioconductor.5, 6  Shortlists for 

HAECs were generated using the criteria of B ≥ 0 and Nominal P ≤ 0.001.  Shortlists for HAoSMCs 

were generated using the criteria of B > 0, Nominal P ≤ 0.001, and fold-change > 2 (i.e. absolute value 

of log2 fold-change > 1).   

 

Quantitative Polymerase Chain Reaction.  For confirmation of microarray data, cells were seeded at 

5 x 104 cells/cm2 on flat and nanotube surfaces.  In addition, ECs were also seeded at 5 x 103 cells/cm2 

for low density experiments.  After 24 hours, samples were harvested using Ambion/Applied 

Biosystems’s Cell to CT kit (Foster City, CA).  Lysis, RT-PCR, and qPCR were performed according to 

manufacturer’s instructions using a StepOne Plus instrument (Applied Biosystems).  Primers for each 

target were designed by Primer Express 3.0 software (Applied Biosystems) or obtained from the 

National Cancer Institute’s Quantitative PCR Primer Database (http://web.ncifcrf.gov/rtp/gel/primerdb/) 

for the following genes: FST (forward primer – 5’-CAGTAAGTCGGATGAGCCTGTCT, reverse 

primer – 5’-CAGCTTCCTTCATGGCACACT), ATF3 (forward – 5’-CTGCCCGCCTTTCATCTG, 

http://web.ncifcrf.gov/rtp/gel/primerdb/


 

reverse – 5’-CAGACACTGCTGCCTGAATCC), EGR1 (forward – 5’-TTTGCCAGGAGCGATGAAC, 

reverse – 5’-CCGAAGAGGCCACAACACTT), YAP1 (forward – 5’-

CGTCCAGCAAGATACTTTAATCCTCTAT, reverse – 5’-

CTGTGAAAGAGGTCAGCAATACATT), and GAPDH (forward – 5’-

TGCACCACCAACTGCTTAGC, reverse – 5’-GGCATGGACTGTGGTCATGAG).  Each 

experimental condition was performed three times (n=3).  Expression levels of the genes were measured 

in technical triplicates. 

 

Supplemental Information 

Microarray data has been submitted to the GEO (accession number:  GSE17676) and can be found at 

the following address:   

 http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=zhinfukqcyiqebk&acc=GSE17676 
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Figure S1:  MM plot of gene expression for VSMCs vs. ECs.   

 

 

 

 



 

 

Figure S2.  Original top network plot for ECs generated by Ingenuity Pathway Analysis.  Red indicates 

upregulation, green down regulation.  Intensity of color is proportional to magnitude of change. 

 

 

 



 

 

 

Figure S3. Original top network plot for VSMCs generated by Ingenuity Pathway Analysis.  Red 
indicates upregulation, green down regulation.  Intensity of color is proportional to magnitude of 
change. 

 

 



 

Table S1:  Genes significantly affected by exposure to nanotubes are listed according to their affect on a 

specific process.  Those that have been shown in literature to inhibit a process are listed on the left two 

columns, and those that promote the process are listed on the right columns.  Superscript refers to 

literature identified through IPA’s curated findings that support all of the gene’s classification(s).  Data 

from these tables were used to plot Figures 1B and 4B.  

 

A. Human Aortic Endothelial Cells 

Proliferation/Cell Cycle Progression 

Inhibit log2FC.NTvsTi  Promote log2FC.NTvsTi  

CCL237, 8 -0.84 ENG9, 10 -0.83 

TPM111, 12 -0.47 RPS15A13 -0.33 

FBLN514 -0.41 TNS315 0.34 

CAPRIN216 -0.19 CREM17 0.3 

PFDN518 -0.32 TSLP19-21 0.43 

NOV22 0.6 KITLG23-25 0.54 

GPR6826 0.63 VIPR127 0.56 

ADIPOQ28-30 0.8 TNXB31, 32 0.55 

  ISG2033 1.1 

  EGR134, 35 1.04 

  ATF336, 37 1.67 

  FST38 1.91 

 
 
Migration   

Inhibit log2FC.NTvsTi  Promote log2FC.NTvsTi  

ENG9, 10 -0.83 TPM111, 12 -0.47 

    FBLN514 -0.41 

    KITLG23-25 0.54 



 

  MFI239 0.6 
    NOV22 0.6 
    ADIPOQ28-30 0.8 

    CCR340 1.03 

    FST38 1.91 

    

Inflammation/Coagulation   

Inhibit log2FC.NTvsTi  Promote log2FC.NTvsTi  

KITLG23-25 0.54 CCL237, 8 -0.84 

TNXB31, 32 0.55 SELP41 -0.61 

    GPR442, 43 -0.49 

    IL13RA144 -0.34 

  TSLP19-21 0.43 

    

 

Apoptosis/Cell Death   

Inhibit log2FC.NTvsTi  Promote log2FC.NTvsTi  

NR2F145 -0.42 CAPRIN216 -0.19 

GPX346 0.34 ITPR347 0.44 

TSLP19-21 0.43 CREM17 0.3 

NEK848 0.67   

ADIPOQ28-30 0.8   

SLC12A249 0.72   

PPID40, 50 0.84   

EGR134, 35 1.04   

ATF336, 37 1.67   

 

B.  Human Aortic Vascular Smooth Muscle Cells 



 

 
Proliferation/Cell Cycle Progression 
Inhibit log2FC.NTvsTi Promote log2FC.NTvsTi 

HIRA51 -2.4 YAP152, 53 -3.09 

IGF2R54, 55 -1.83 FADD56, 57 -2.38 

VPS1858 -1.6 PRPF1959 -2.15 

KCTD1160 -1.43 GBF161 -2.13 

ATF562, 63 -1.36 MCL164, 65 -2.07 

HMOX166, 67 -1.06 FUS68, 69 -2.04 

EREG70, 71 1.02 RALGDS72, 73 -2.02 

BDKRB274, 75 1.17 H1976 -1.92 

NR4A277, 78 1.22 IGF2R54, 55 -1.83 

BDKRB175, 79, 80 1.3 SFRS581,82 -1.82 

NR4A183, 84 1.33 RXRB85-87 -1.81 

SLA88, 89 1.53 TGFB290, 91 -1.67 

  LIG192 -1.61 

    SEMA4C93 -1.56 

    F1094, 95 -1.42 

    NCL96 -1.42 

    ARRB197, 98 -1.32 

    PPP1R899 -1.26 

    THG1L100 -1.26 

    RCC1101 -1.25 

    SKI102, 103 -1.25 

    ITGA2104 -1.2 

    PEA15105, 106 -1.12 

    CYR61107 -1.12 

    EWSR1108 -1.1 



 

 

 
Migration 
Inhibit log2FC.NTvsTi Promote log2FC.NTvsTi 
ABHD2111 -1.95 PRKAG129 -2.69 
TMBIM1112 -1.21 HNRPAB113 -2.15 
SOCS3114, 115 -1.01 SEMA4C93 -1.56 
    ARRB197, 98 -1.32 
    PDLIM2116 -1.23 
    ITGA2104 -1.2 
    WASF2110 -1.02 
    MYO10117 -1.01 
    CD151118 -1 
    BDKRB175, 79, 80 1.29 
    HAS1119 1.36 
    IRS2120 2.32 
 
Inflammation/Coagulation 
Inhibit log2FC.NTvsTi Promote log2FC.NTvsTi 
EXT1121 -1.16 LAMP1122, 123 -2.23 
ADAMTS13124 1.2 RALGDS72, 73 -2.02 
GLIS2125 1.52 PEAR1126 -1.8 
SLA88, 89 1.53 ATRN127 -1.63 
    CHST2128 -1.58 
    F1094, 95 -1.42 
    CXCL6129 1.16 
    BDKRB175, 79, 80 1.3 
 
Apoptosis/Cell Death 
Inhibit log2FC.NTvsTi  Promote log2FC.NTvsTi  

YAP152, 53 -3.09 FADD56, 57 -2.38 

PRPF1959 -2.15 LAMP1122, 123 -2.23 

MCL164, 65 -2.07 AQP3130 -2.1 

SFRS581, 82 -1.82 FUS68, 69 -2.04 

RXRB85-87 -1.81 BAX131 -1.92 

TNIP2132 -1.81 IGF2R54, 55 -1.83 

    RBBP6109 -1.08 

    WASF2110 -1.02 

    EREG70, 71 1.02 



 

DNAJB2133 -1.72 TRIB2134 -1.67 

ATF562, 63 -1.36 BBC3135 -1.61 

THG1L100 -1.26 UACA136 -1.49 

SKI102, 103 -1.25 NCL96 -1.42 

PEA15105, 106 -1.12 TNKS2137 -1.31 

RBBP6109 -1.08 SDHC138 -1.17 

HMOX1 -1.06 SOCS3114, 115 -1.01 

BDKRB274, 75 1.17 NR4A183, 84 1.33 

NR4A277, 78 1.22   

BDKRB175, 79, 80 1.29     

IRS2120 2.32   
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