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1 Corrected Derivation of Full Conditional Distribution of
(1, v)

We will consider a general eight parameter bivariate von Mises distribution. Using the representation
from Mardia et al. (2007), the density can be expressed as:
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where A; is a 2 x 2 matrix. For a dataset consisting of (¢;,1;), ¢ = 1,...n, the full conditional log
density of (i, v) up to a constant can be expressed as:

L(1,v) = rs 03(9i = ) + ias 3(th = v) +[cos(6; — ), sin(s — )] Aifeos (s — v),sin(us; — )"

- (Z Rsleos(6), sin(@-)]) feos(p), sin(p)]” + (Z railcos(vy), sin(zm) [cos(v), sin(v)]”

i=1 i=1
+ 2 _leos(@i — ) sin(i — )] Asfeos(v — v), sin(; — )]

Notice that the first two terms are consistent with a bivariate von Mises distribution with:
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The full conditional means are the directions of the sums of the observation vectors, while the full
conditional concentration parameters are the magnitudes of the same sums. This allows us to rewrite
the log likelihood as:
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We will now focus on the final term of the log likelihood to determine A.
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Note that the determinants of the i and 7 matrices are both cos(0) = 1.
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So our full conditional matrix (with a uniform prior) will be:
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Now consider the situation with a bivariate von Mises prior on (i, r) with parameters pg, o,
K10, k20, and Ag = [ z Z } For the purposes of calculating fi, 7, K1, and Ko the prior can be
treated as an additional observation with ¢y = pg and ¥g = vy. The situation for the matrix A is
slightly more complicated. The full conditional matrix changes to:
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et al. 2002), and cosine (Mardia et al. 2007) models, then Ag = Aj,.

So if we are dealing with a bivariate von Mises sine model with a sine model prior, in which case
A; is a matrix with \; in the lower right corner and Os elsewhere, then:
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where A, = . Note that when b = ¢ = 0, as in the case of the Rivest (1988), sine (Singh

Mardia (2009) independently derived the full conditional distribution of the bivariate von Mises sine
model and announced the general case.

2 Corrected Results

Originally in Section 5.1, the von Mises distribution outperformed the normal distribution for 14/20
amino acids (11/12 with high edge proportion). In the repeated analysis it outperformed the normal
for 19/20 amino acids (11/12 with high edge proportion).
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Figure 1: Corrected divergence plot.



The results of the corrected analysis for the whole and half position datasets were very similar
to the original results. For example, the corrected divergence plot (originally Figure 4) is shown
in Figure 1. Notice that the minimum divergence values are very similar to those presented in the
paper, and the superiority of the half positions relative to the whole positions is unchanged.

References

Mardia, K. V. (2009), “Statistical Complexity in Protein Bioinformatics,” LASR 2009 Proceedings,
Editors A. Gustano, K. V. Mardia and C. J. Fallaize, July 7 - July 9, 2009, Leeds, Leeds University
Press, 9-20.

Mardia, K. V., Taylor, C. C., and Subramaniam, G. K. (2007), “Protein Bioinformatics and Mixtures
of Bivariate Von Mises Distributions for Angular Data,” Biometrics, 63, 505-512.

Rivest, L. P. (1988), “A Distribution for Dependent Unit Vectors,” Communications in Statistics:
Theory and Methods, 17, 461-483.

Singh, H., Hnizdo, V., and Demchuk, E. (2002), “Probabilistic Model for Two Dependent Circular
Variables,” Biometrika, 89, 719-723.



