Supporting Text

An Allosteric Model for G_{sa} Function

Consider a two-state equilibrium between a basal state of G protein (stabilized by GDP G (G) (which binds $G_{\beta\gamma}$) and an active state of G protein (stabilized by GTP) (G*) [which binds adenylyl cyclase (AC)] that is coupled to nucleotide exchange (see Fig. 2), where L_{GDP} is the equilibrium constant for the reaction in the GDP-bound state, and L_{GTP} is that in the GTP-bound state. The apparent equilibrium binding constant (dissociation constant) for interaction of AC or $G_{\beta\gamma}$ with the GTP- or GDP-bound states of $G_{s\alpha}$ will depend on the allosteric constants in the following manner:

$$\begin{split} K^{AC}_{app,GTP} &= K_{AC} \Biggl[1 + \frac{1}{L_{GTP}} \Biggr] \\ K^{AC}_{app,GDP} &= K_{AC} \Biggl[1 + \frac{1}{L_{GDP}} \Biggr] \\ K^{\beta\gamma}_{app,GTP} &= K_{\beta\gamma} \Biggl[1 + L_{GTP} \Biggr] \\ K^{\beta\gamma}_{app,GDP} &= K_{\beta\gamma} \Biggl[1 + L_{GDP} \Biggr], \end{split}$$

where K_{AC} is the intrinsic binding constant of adenylyl cyclase to the G* state, and $K_{\beta\gamma}$ is the intrinsic binding constant of $G_{\beta\gamma}$ to the G state. To understand the effect of mutations that alter the allosteric binding constants, we plot the apparent binding constants for AC and $G_{\beta\gamma}$ for all values of *L* in Fig. 7.

Consider the effect of mutants that cause equal left or right shifts of the allosteric constants L_{GDP} and L_{GTP} on the binding affinities of adenylyl cyclase or $G_{\beta\gamma}$. Shifts to the right will cause the ratio of affinities of adenylyl cyclase for the GTP γ S and GDP states (the nucleotide sensitivity) to decrease relative to WT but will cause the same ratio for $G_{\beta\gamma}$ to increase relative to WT. Shifts of L_{GTP} and L_{GDP} to the left will cause exactly the opposite effect. In contrast, mutations that perturb the absolute affinities for cyclase or $G_{\beta\gamma}$ need not (and generally will not) display a reciprocal effect on the nucleotide sensitivities.