Enantioselective Conjugate Silyl Additions to Cyclic and Acyclic Unsaturated Carbonyls Catalyzed by Cu Complexes of Chiral N-Heterocyclic Carbenes

Kang-sang Lee and Amir H. Hoveyda*

Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467

SUPPORTING INFORMATION, PART I

List of Contents

General	···· Page S2
Compounds in Table 2 ·····	Page S2-S7
Compounds in Table 3 ····· P	age S7-S11
Compound 13	·· Page S12
Compound 14 ······	·· Page S12
Compound 15	·· Page S13
Compound 16	·· Page S13
Compound 20	·· Page S14
Compound 21	·· Page S15
Compound 22 ·····	·· Page S16
Compound 23	·· Page S16
Compound 24 ·····	·· Page S16
Compound 26	·· Page S16
Compound 27 ·····	·· Page S17
Compound 28 ·····	·· Page S18
Screening of ligands	···Page S19

General. Infrared (IR) spectra were recorded on a Bruker FT-IR Alpha (ATR mode) spectrophotometer, v_{max} in cm⁻¹. Bands are characterized as broad (br), strong (s), medium (m), and weak (w). ¹H NMR spectra were recorded on a Varian Unity INOVA 400 (400 MHz) spectrometer. Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance as the internal standard (CDCl₃: 7.26 ppm). Data are reported as follows: chemical shift, integration, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, sep = septet, bs = broad singlet, m = multiplet), and coupling constants (Hz). ¹³C NMR spectra were recorded on a Varian Unity INOVA 400 (100 MHz) spectrometer with complete proton decoupling. Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance as the internal standard (CDCl₃: 77.16 ppm). High-resolution mass spectrometry was performed on a Micromass LCT ESI-MS (positive mode) at the Mass Spectrometry Facility at Boston College. Enantiomer ratios were determined by HPLC analysis (Chiral Technologies Chiralpak AD-H, 4.6 x 250 mm, Chiral Technologies Chiralcel OD, 4.6 x 250 mm, Chiral Technologies Chiralcel AS, 4.6 x 250 mm, and Chiral Technologies Chiralcel OB-H, 4.6 x 250 mm) in comparison with authentic racemic materials. Unless otherwise noted, all reactions were carried out with distilled and degassed solvents under an atmosphere of dry N2 in oven- (135 °C) and flame-dried glassware with standard dry box or vacuum-line techniques. Tetrahydrofuran (THF) was purified by distillation from sodium benzophenone ketyl immediately prior to use. All work-up and purification procedures were carried out in air. All solvents were purchased from Doe and Ingalls. (Dimethylphenylsilyl)boronic acid pinacol ester [PhMe₂Si(Bpin)] was purchased from Aldrich and distilled prior to use. All substrates were purchased from Aldrich and distilled prior to use. 2-Cyclooctenone and dienones (17 and 18) were prepared based on a previously reported procedure.¹ Sodium *t*-butoxide and copper(I) chloride were purchased from Strem and used as received.

NOTE: It is imperative that dry and pure reagents, Cu salt and imidazolinium salt are utilized in order to achieve optimal efficiency and enantioselectivity.

■ Representative Procedure for NHC–Cu-Catalyzed Enantioselective Conjugate Silyl Additions: Preparation of the desired NHC–CuOt-Bu: In an oven-dried vial (6 x 1 cm) equipped with a stir bar, imidazolinium tetrafluoroborate salt 12 (22 mg, 0.036 mmol), NaOt-Bu (6.9 mg, 0.072 mmol), and CuCl (3.3 mg, 0.033 mmol) were placed and 5.0 mL of THF was added. After the solution was allowed to stir for two hours at 22 °C under a dry N₂ atmosphere, it was filtered through a short plug of flame-dried Celite.

An appropriate portion of the solution of NHC–CuO*t*-Bu (0.0033 mmol in 0.50 mL THF) was placed in a separate oven-dried vial (6 x 1 cm), and the resulting solution was charged with PhMe₂Si(Bpin) [96 mg (0.36 mmol) in 0.50 mL THF]. The vessel was then removed from the glovebox, placed in a fume hood and cooled to -78 °C. 2-Cyclohexenone (32 mg, 0.33 mmol)

^{(1) (}a) Ito, Y.; Hirao, T.; Saegusa, T. J. Org. Chem. **1978**, 43, 1011–1013. (b) Hayashi, T.; Yamamoto, S.; Tokunaga, N. Angew. Chem., Int. Ed. **2005**, 44, 4224–4227. (c) Henon, H.; Mauduit, M.; Alexakis, A. Angew. Chem., Int. Ed. **2008**, 47, 9122–9124.

was added and the mixture was allowed to stir for one hour at -78 °C, after which the reaction was quenched by the addition of H₂O (3 mL) and the mixture was allowed to warm to 22 °C and stir for an additional 15 minutes. The layers were separated, and the aqueous layer was washed with Et₂O (10 mL x 3). The combined organic layers were dried over MgSO₄ and filtered. The volatiles were removed *in vacuo* and the resulting light yellow oil was purified by silica gel chromatography (hexanes/Et₂O:5/1) to afford 71 mg (0.31 mmol, 92% yield) of (*S*)-3-(dimethyl(phenyl)silyl)-cyclohexanone **6**, as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.50-7.45 (2H, m), 7.41-7.34 (3H, m), 2.40-2.21 (3H, m), 2.21-2.06 (2H, m), 1.85-1.78 (1H, m), 1.77-1.64 (1H, m), 1.42 (1H, ddd, *J* = 25.6, 12.8, 3.6 Hz), 1.33-1.25 (1H, m), 0.31 (3H, s), 0.31(3H, s). Optical rotation:² [α]_D²⁰ –75.6 (*c* 1.00, CHCl₃) for a sample with 97.4:2.6 er. The spectroscopic data match those reported previously.³ Enantiomeric purity was determined by HPLC analysis in comparison with authentic racemic material (97.4:2.6 er shown below; chiracel AS column (25 cm x 0.46 cm), 99.7/0.3 hexanes/*i*-PrOH, 1.0 mL/min, 220 nm).

(*S*)-3-(Dimethyl(phenyl)silyl)cyclopentanone (Table 2, entry 1). ¹H NMR (400 MHz, CDCl₃): δ 7.51-7.47 (2H, m), 7.40-7.33 (3H, m), 2.29-2.17 (2H, m), 2.14-2.04 (2H, m), 1.92-1.84 (1H, m), 1.73-1.61 (1H, m), 1.58-1.48 (1H, m), 0.31 (6H, s). Optical rotation:² [α]_D²⁰ –42.9 (*c* 2.06, CHCl₃) for a sample with 90:10 er. The spectroscopic data match those reported previously.³ Enantiomeric purity was determined by HPLC analysis in comparison with authentic racemic material (90:10 er shown below; chiralpak AD-H column (25 cm x 0.46 cm), 99/1 hexanes/*i*-PrOH, 1.0 mL/min, 220 nm).

⁽²⁾ Walter, C.; Auer, G.; Oestreich, M. Angew. Chem., Int. Ed. 2006, 45, 5675-5677.

⁽³⁾ Ito, H.; Ishizuka, T.; Tateiwa, J.-i.; Sonoda, M.; Hosomi, A. J. Am. Chem. Soc. 1998, 120, 11196–11197.

(*S*)-3-(Dimethyl(phenyl)silyl)cycloheptanone (Table 2, entry 3). IR (neat): 2921 (m), 2849 (w), 1696 (s), 1443 (m), 1248 (s) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.49-7.46 (2H, m), 7.38-7.32 (3H, m), 2.59-2.26 (4H, m), 2.08-1.85 (3H, m), 1.54-1.42 (1H, m), 1.33-1.03 (3H, m), 0.29 (3H, s), 0.28 (3H, s); ¹³C NMR (100 MHz, CDCl₃): δ 216.0, 137.7, 134.6, 129.9, 128.5, 45.2, 44.1, 32.5, 31.8, 25.0, 24.0, -4.3, -4.5; HRMS (ES⁺) Calcd for C₁₅H₂₂SiONa [M+Na]: 269.1338, Found: 269.1329. Optical rotation:² [α]_D²⁰ -75.0 (*c* 1.00, CHCl₃) for a sample with 97:3 er. Enantiomeric purity was determined by HPLC analysis in comparison with authentic racemic material (97:3 er shown below; chiracel AS column (25 cm x 0.46 cm), 99.7/0.3 hexanes/*i*-PrOH, 1.0 mL/min, 220 nm).

3-(Dimethyl(phenyl)silyl)cyclooctanone (Table 2, entry 4). IR (neat): 2927 (m), 2857 (w), 1697 (s), 1408 (m), 1248 (s) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.52-7.48 (2H, m), 7.40-7.33 (3H, m), 2.57-2.50 (1H, m), 2.34-2.18 (3H, m), 1.88-1.76 (2H, m), 1.70-1.53 (3H, m), 1,48-1.19 (4H, m), 0.31 (3H, s), 0.31 (3H, s); ¹³C NMR (100 MHz, CDCl₃): δ 219.6, 137.5, 134.1, 129.4, 128.1, 43.2, 41.7, 28.3, 27.1, 26.5, 26.2, 24.1, -4.6, -4.8; HRMS (ES⁺) Calcd for C₁₆H₂₄SiONa

[M+Na]: 283.1494, Found: 283.1495. Optical rotation: $[\alpha]_D^{20}$ +25.4 (*c* 1.45, CHCl₃) for a sample with 98:2 er. Enantiomeric purity was determined by HPLC analysis in comparison with authentic racemic material (98:2 er shown below; chiracel AS column (25 cm x 0.46 cm), 99.7/0.3 hexanes/*i*-PrOH, 1.0 mL/min, 220 nm).

(*R*)-4-(Dimethyl(phenyl)silyl)-3,3-dimethylcyclopentanone (Table 2, entry 5). IR (neat): 2954 (m), 1738 (s), 1427 (m), 1402 (m), 1250 (s) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.54-7.50 (2H, m), 7.38-7.33 (3H, m), 2.38-2.23 (2H, m), 2.63 (2H, dd, *J* = 29.6, 17.6 Hz), 1.51 (1H, dd, *J* = 12.8, 9.2 Hz), 1.10 (3H, s), 1.00 (3H, s), 0.42 (3H, s), 0.38 (3H, s); ¹³C NMR (100 MHz, CDCl₃): δ 220.6, 139.1, 134.4, 129.8, 128.6, 57.3, 40.7, 40.6, 36.8, 30.8, 26.3, -1.6, -2.2; HRMS (ES⁺) Calcd for C₁₅H₂₂SiONa [M+Na]: 269.1338, Found: 269.1335. Optical rotation: [α]_D²⁰ – 118.6 (*c* 1.05, CHCl₃) for a sample with 99:1 er. Enantiomeric purity was determined by HPLC analysis in comparison with authentic racemic material (99:1 er shown below; chiracel OD column (25 cm x 0.46 cm), 99.9/0.1 hexanes/*i*-PrOH, 1.0 mL/min, 220 nm).

(*R*)-3-(Dimethyl(phenyl)silyl)-4,4-dimethylcyclohexanone (Table 2, entry 6). ¹H NMR (400 MHz, CDCl₃): δ 7.51-7.46 (2H, m), 7.36-7.33 (3H, m), 2.45-2.19 (4H, m), 1.73-1.61 (2H, m), 1.37 (1H, dd, *J* = 14.0, 3.6 Hz), 1.10 (3H, s), 0.98 (3H, s), 0.39 (3H, s), 0.36 (3H, s). Optical rotation: $[\alpha]_D^{20}$ –71.7 (*c* 1.30, CHCl₃) for a sample with 99:1 er. The spectroscopic data match those reported previously. ⁴ Enantiomeric purity was determined by HPLC analysis in comparison with authentic racemic material (99:1 er shown below; chiracel OD column (25 cm x 0.46 cm), 99/1 hexanes/*i*-PrOH, 1.0 mL/min, 220 nm).

(*S*)-7-(Dimethyl(phenyl)silyl)-6,7,8,9-tetrahydro-5*H*-benzo[7]annulen-5-one (Table 2, entry 7). IR (neat): 2951 (m), 1672 (s), 1598 (m), 1427 (m), 1250 (s) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.76 (1H, dd, *J* = 6.0, 1.2 Hz), 7.53-7.50 (2H, m), 7.45 (1H, td, *J* = 6.0, 1.2 Hz), 7.43-7.32 (4H, m), 7.18 (1H, d, *J* = 6.0 Hz), 2.97-2.91 (1H, m), 2.89-2.73 (2H, m), 2.54 (1H, dd, *J* = 13.6, 10.4 Hz), 1.90-1.78 (2H, m), 1.30-1.23 (1H, m), 0.35 (3H, s), 0.34 (3H, s); ¹³C NMR (100 MHz, CDCl₃): δ 207.3, 140.9, 138.7, 137.1, 134.2, 132.6, 129.7, 129.5, 128.9, 128.1, 127.0, 41.9, 33.3, 27.1, 18.9, -4.7, -4.8; HRMS (ES⁺) Calcd for C₁₉H₂₆SiNO [M+NH₄]: 312.1784, Found: 312.1770. Optical rotation: [α]_D²⁰ +2.80 (*c* 1.00, CHCl₃) for a sample with 96.5:3.5 er. Enantiomeric purity was determined by HPLC analysis in comparison with authentic racemic material (96.5:3.5 er shown below; chiralpak AD-H column (25 cm x 0.46 cm), 99/1 hexanes/*i*-PrOH, 0.9 mL/min, 220 nm).

⁽⁴⁾ Auer, G.; Weiner, B.; Oestreich, M. Synthesis 2006, 2113-2116.

(*S*)-4-(Dimethyl(phenyl)silyl)tetrahydro-2*H*-pyran-2-one (Table 2, entry 8). ¹H NMR (400 MHz, CDCl₃): δ 7.49-7.46 (2H, m), 7.43-7.35 (3H, m), 4.34 (1H, dt, *J* = 10.8, 4.8 Hz), 4.25 (1H, ddd, *J* = 10.8, 10.0, 4.0 Hz), 2.57 (1H, ddd, *J* = 17.2, 6.0, 1.6 Hz), 2.28 (1H, dd, *J* = 17.6, 13.2 Hz), 1.88-1.81 (1H, m), 1.70-1.60 (1H, m), 1.44-1.36 (1H, m), 0.34 (6H, s). Optical rotation: $[\alpha]_{D}^{20}$ –29.6 (*c* 1.50, CHCl₃) for a sample with 92:8 er. The spectroscopic data match those reported previously.⁵ Enantiomeric purity was determined by HPLC analysis in comparison with authentic racemic material (92:8 er shown below; chiralpak AD-H column (25 cm x 0.46 cm), 99/1 hexanes/*i*-PrOH, 0.9 mL/min, 220 nm).

(*S*)-4-(Dimethyl(phenyl)silyl)pentan-2-one (Table 3, entry 1). ¹H NMR (400 MHz, CDCl₃): δ 7.52-7.47 (2H, m), 7.39-7.33 (3H, m), 2.42 (1H, dd, J = 16.4, 3.6 Hz), 2.18 (1H, dd, J = 16.0, 10.8 Hz), 2.07 (3H, s), 1.54-1.45 (1H, m), 0.93 (3H, d, J = 7.2 Hz), 0.29 (3H, s), 0.28 (3H, s). Optical rotation: $[\alpha]_D^{20}$ +26.2 (*c* 0.55, CHCl₃) for a sample with 97:3 er. The spectroscopic data

⁽⁵⁾ Crump, R. A. N. C.; Fleming, I.; Urch, C. J. J. Chem. Soc., Perkin Trans. 1 1994, 701–706.

match those reported previously and the absolute configuration was assigned by comparison with reported data.⁶ Enantiomeric purity was determined by HPLC analysis in comparison with authentic racemic material (97:3 er shown below; chiralpak AD-H column (25 cm x 0.46 cm), 99.8/0.2 hexanes/*i*-PrOH, 0.5 mL/min, 220 nm).

(*S*)-4-(Dimethyl(phenyl)silyl)nonan-2-one (Table 3, entry 2). IR (neat): 2955 (m), 2925 (m), 1716 (s), 1427 (m) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.51-7.48 (2H, m), 7.36-7.31 (3H, m), 2.41 (1H, dd, *J* = 17.2, 5.2 Hz), 2.31 (1H, dd, *J* = 17.2, 8.0 Hz), 2.03 (3H, s), 1.54-1.38 (2H, m), 1.30-1.10 (7H, m), 0.85-0.82 (3H, m), 0.28 (3H, s), 0.27 (3H, s); ¹³C NMR (100 MHz, CDCl₃): δ 209.2, 138.2, 133.9, 128.9, 127.7, 44.5, 32.0, 30.5, 29.8, 28.8, 22.5, 20.3, 14.0, -3.9, -4.4; HRMS (ESI⁺) Calcd for C₁₇H₂₈SiO [M+]: 276.1909, Found: 276.1923. Optical rotation: [α]_D²⁰ +36.0 (*c* 1.97, CHCl₃) for a sample with 98:2 er. The absolute configuration was assigned by analogy to entry 1 in Table 3. Enantiomeric purity was determined by HPLC analysis in comparison with authentic racemic material (98:2 er shown below; chiracel AS column (25 cm x 0.46 cm), 99.9/0.1 hexanes/*i*-PrOH, 1.0 mL/min, 220 nm).

(*R*)-4-(Dimethyl(phenyl)silyl)-5-methylhexan-2-one (Table 3, entry 3). ¹H NMR (400 MHz, CDCl₃): δ 7.52-7.48 (2H, m), 7.36-7.32 (3H, m), 2.45 (1H, dd, *J* = 17.6, 7.2 Hz), 2.36 (1H, dd, *J* = 17.6, 5.2 Hz), 2.00 (3H, s), 1.93-1.82 (1H, m), 1.63-1.57 (1H, m), 0.88 (3H, d, *J* = 6.8 Hz), 0.82 (3H, d, *J* = 7.2 Hz), 0.33 (3H, s), 0.30 (3H, s); ¹³C NMR (100 MHz, CDCl₃): δ 209.9, 139.6, 134.6, 129.5, 128.4, 42.0, 30.4, 29.5, 28.2, 23.6, 21.9, -1.6, -2.4. Optical rotation: [α]_D²⁰ +18.6 (*c* 2.45, CHCl₃) for a sample with 97:3 er. The spectroscopic data match those reported previously⁶ and the absolute configuration was assigned by analogy to entry 1 in Table 3. Enantiomeric purity was determined by HPLC analysis in comparison with authentic racemic material (97:3 er shown below; chiracel AS column (25 cm x 0.46 cm), 99.9/0.1 hexanes/*i*-PrOH, 1.0 mL/min, 220 nm).

(*R*)-4-(Dimethyl(phenyl)silyl)-4-phenylbutan-2-one (Table 3, entry 4). ¹H NMR (400 MHz, CDCl₃): δ 7.39-7.30 (5H, m), 7.19-7.15 (2H, m), 7.09-7.04 (1H, m), 6.93-6.91 (2H, m), 2.93-2.83 (2H, m), 2.62 (1H, dd, *J* = 22.8, 11.2 Hz), 1.92 (3H, s), 0.23 (3H, s), 0.20 (3H, s). Optical rotation: $[\alpha]_{D}^{20}$ +11.7 (*c* 1.00, CHCl₃) for a sample with 98.5:1.5 er. The spectroscopic data match those reported previously and the absolute configuration was assigned by comparison with reported data.⁷ Enantiomeric purity was determined by HPLC analysis in comparison with authentic racemic material (98.5:1.5 er shown below; chiracel OD column (25 cm x 0.46 cm), 99.9/0.1 hexanes/*i*-PrOH, 1.0 mL/min, 220 nm).

⁽⁶⁾ Barbero, A.; Blakemore, D. C.; Fleming, I.; Wesley, R. N. J. Chem. Soc. Perkin Trans. 1 1997, 1329–1352.

⁽⁷⁾ Kacprzynski, M. A.; Kazane, S. A.; May, T. L.; Hoveyda, A. H. Org. Lett. 2007, 9, 3187-3190.

(*R*)-4-(Dimethyl(phenyl)silyl)-4-(4-methoxyphenyl)butan-2-one (Table 3, entry 5). ¹H NMR (400 MHz, CDCl₃): δ 7.40-7.30 (5H, m), 6.84 (2H, d, *J* = 8.4 Hz), 6.73 (2H, d, *J* = 8.4 Hz), 3.74 (3H, s), 2.87-2.77 (2H, m), 2.59 (1H, dd, *J* = 26.4, 13.2 Hz), 1.92 (3H, s), 0.22 (3H, s), 0.19 (3H, s). Optical rotation: $[\alpha]_{D}^{20}$ –1.84 (*c* 1.30, CHCl₃) for a sample with 97:3 er. The spectroscopic data match those reported previously⁶ and the absolute configuration was assigned by analogy to entry 4 in Table 3. Enantiomeric purity was determined by HPLC analysis in comparison with authentic racemic material (97:3 er shown below; chiracel AD-H column (25 cm x 0.46 cm), 95/5 hexanes/*i*-PrOH, 0.9 mL/min, 220 nm).

(*R*)-4-(Dimethyl(phenyl)silyl)-4-(4-(trifluoromethyl)phenyl)butan-2-one (Table 3, entry 6). ¹H NMR (400 MHz, CDCl₃): δ 7.46-7.36 (7H, m), 7.03 (2H, d, *J* = 8.0 Hz), 3.02-2.91 (2H, m), 2.71 (1H, d, *J* = 16.0 Hz), 1.98 (3H, s), 0.26 (3H, s), 0.25 (3H, s); optical rotation: $[\alpha]_D^{20}$ +6.66 (*c* 2.45, CHCl₃) for a sample with 96:4 er. The spectroscopic data match those reported previously⁶ and the absolute configuration was assigned by analogy to entry 4 in Table 3.

Enantiomeric purity was determined by HPLC analysis in comparison with authentic racemic material (96:4 er shown below; chiralpak AD-H column (25 cm x 0.46 cm), 99/1 hexanes/*i*-PrOH, 0.3 mL/min, 220 nm).

(*R*)-4-(Dimethyl(phenyl)silyl)-4-*o*-tolylbutan-2-one (Table 3, entry 7). ¹H NMR (400 MHz, CDCl₃): δ 7.40-7.32 (5H, m), 7.10-7.07 (2H, m), 7.02-6.98 (1H, m), 6.88-6.86 (1H, m), 3.16 (1H, dd, *J* = 11.2, 4.0 Hz), 2.96 (1H, dd, *J* = 16.8, 10.8 Hz), 2.68 (1H, dd, *J* = 16.8, 4.0 Hz), 2.24 (3H, s), 1.93 (3H, s), 0.30 (3H, s), 0.21 (3H, s). Optical rotation: $[\alpha]_D^{20}$ +11.3 (*c* 1.08, CHCl₃) for a sample with 93.5:6.5 er. The spectroscopic data match those reported previously⁸ and the absolute configuration was assigned by analogy to entry 4 in Table 3. Enantiomeric purity was determined by HPLC analysis in comparison with authentic racemic material (93.5:6.5 shown below; chiracel OD column (25 cm x 0.46 cm), 99.9/0.1 hexanes/*i*-PrOH, 0.5 mL/min, 220 nm).

⁽⁸⁾ Shintani, R.; Okamoto, K.; Hayashi, T. Org. Lett. 2005, 7, 4757-4759.

(*S*)-3-(Dimethyl(phenyl)silyl)-1-phenylbutan-1-one (13). ¹H NMR (400 MHz, CDCl₃): δ 7.84-7.81 (2H, m), 7.55-7.49 (3H, m), 7.42-7.35 (5H, m), 3.00 (1H, dd, *J* = 16.0, 3.2 Hz), 2.66 (1H, dd, *J* = 16.0, 11.2 Hz), 1.66-1.57 (1H, m), 0.98 (3H, d, *J* = 7.2 Hz), 0.34 (3H, s), 0.33 (3H, s); ¹³C NMR (100 MHz, CDCl₃): δ 200.5, 137.6, 137.1, 134.0, 132.7, 129.1, 128.5, 128.1, 127.8, 40.7, 15.9, 14.6, -4.7, -5.4. Optical rotation: $[\alpha]_D^{20}$ +12.4 (*c* 1.10, CHCl₃) for a sample with 95.5:4.5 er. The spectroscopic data match those reported previously⁹ and the absolute configuration was assigned by comparison with reported data.¹⁰ Enantiomeric purity was determined by HPLC analysis in comparison with authentic racemic material (95.5:4.5 er shown below; chiracel OD column (25 cm x 0.46 cm), 99.9/0.1 hexanes/*i*-PrOH, 1.0 mL/min, 220 nm).

(*R*)-3-(Dimethyl(phenyl)silyl)-3-phenylpropanenitrile (14). ¹H NMR (400 MHz, CDCl₃): δ 7.43-7.33 (5H, m), 7.27-7.23 (2H, m), 7.19-7.14 (1H, m), 6.96-6.93 (2H, m), 2.65-2.56 (3H, m), 0.27 (6H, s); ¹³C NMR (100 MHz, CDCl₃): δ 140.3, 135.8, 134.7, 130.5, 129.2, 128.7, 128.1, 126.6, 120.3, 33.7, 19.5, -3.4, -4.9. Optical rotation: $[\alpha]_D^{20}$ -13.4 (*c* 1.16, CHCl₃) for a sample with 90:10 er. The spectroscopic data match those reported previously⁵ and the absolute configuration was assigned by analogy to entry 1 in Table 3. Enantiomeric purity was determined by HPLC analysis in comparison with authentic racemic material (90:10 er shown below; chiracel AS column (25 cm x 0.46 cm), 99.7/0.3 hexanes/*i*-PrOH, 1.0 mL/min, 220 nm).

⁽⁹⁾ Fleming, I.; Henning, R.; Parker, D. C.; Plaut, H. E.; Sanderson, P. E. J. J. Chem. Soc., Perkin Trans. 1, 1995, 317–337.

⁽¹⁰⁾ Hayashi, T.; Matsumoto, Y.; Ito, Y. J. Am. Chem. Soc. 1988, 110, 5579-5581.

(*S*)-Methyl 3-(dimethyl(phenyl)silyl)butanoate (15). ¹H NMR (400 MHz, CDCl₃): δ 7.52-7.49 (2H, m), 7.39-7.33 (3H, m), 3.62 (3H, s), 2.39 (1H, dd, *J* = 15.2, 4.0 Hz), 2.07 (1H, dd, *J* = 15.2, 11.2 Hz), 1.49-1.40 (1H, m), 0.98 (3H, d, *J* = 7.2 Hz), 0.29 (6H, s). Optical rotation: $[\alpha]_D^{20}$ +2.50 (*c* 1.75, CHCl₃) for a sample with 96.5:3.5 er. The spectroscopic data match those reported previously¹¹ and the absolute configuration was assigned by analogy to entry 1 in Table 3. Enantiomeric purity was determined by HPLC analysis in comparison with authentic racemic material (96.5:3.5 er shown below; chiralpak AD-H column (25 cm x 0.46 cm), 99.8/0.2 hexanes/*i*-PrOH, 0.51 mL/min, 220 nm).

(*R*)-Methyl 3-(dimethyl(phenyl)silyl)-3-phenylpropanoate (16). ¹H NMR (400 MHz, CDCl₃): δ 7.42-7.32 (5H, m), 7.22-7.19 (2H, m), 7.12-7.08 (1H, m), 6.97-6.95 (2H, m), 3.47 (3H, s), 2.86 (1H, dd, *J* = 11.2, 4.8 Hz), 2.77 (1H, dd, *J* = 15.6, 11.2 Hz), 2.66 (1H, dd, *J* = 15.6, 11.2 Hz), 0.98 (3H, d, *J* = 7.2 Hz), 0.26 (3H, s), 0.23 (3H, s). Optical rotation: [α]_D²⁰ +4.98 (*c* 2.30, CHCl₃)

⁽¹¹⁾ Lipshutz, B. H.; Tanaka, N.; Taft, B. R.; Lee, C-T. Org. Lett. 2006, 8, 1963–1966.

for a sample with 95.5:4.5 er. The spectroscopic data match those reported previously¹² and the absolute configuration was assigned by analogy to the product entry 4 in Table 3. Enantiomeric purity was determined by HPLC analysis in comparison with authentic racemic material (95.5:4.5 er shown below; chiralpak AD-H column (25 cm x 0.46 cm), 99.2/0.8 hexanes/*i*-PrOH, 0.3 mL/min, 220 nm).

Chiral NHC–Cu-Catalyzed Enantioselective 1,6-Conjugate Silyl Additions

(*R*,*Z*)-3-(2-(Dimethyl(phenyl)silyl)-2-phenylethylidene)cyclohexanone (20). IR (neat): 3023 (m), 2956 (m), 1714 (s), 1248 (m) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.36-7.26 (5H, m), 7.18 (2H, t, *J* = 8.0 Hz), 7.07 (1H, t, *J* = 7.4 Hz), 6.97-6.93 (2H, m), 5.67 (1H, d, *J* = 11.6 Hz), 3.25 (1H, d, *J* = 11.6 Hz), 2.94 (1H, d, *J* = 16.4 Hz), 2.69 (1H, dd, *J* = 16.4, 1.6 Hz), 2.38-2.26 (4H, m), 1.80-1.65 (2H, m), 0.22 (3H, s), 0.19 (3H, s); ¹³C NMR (100 MHz, CDCl₃): δ 209.3, 142.4, 137.3, 134.9, 132.2, 129.9, 128.9, 128.2, 127.9, 125.4, 124.7, 46.0, 42.0, 38.0, 35.8, 25.6, -3.7, -4.5; HRMS (ES⁺) Calcd for C₂₂H₂₆SiONa [M+Na]: 357.1651, Found: 357.1645. Optical rotation: $[\alpha]_D^{20}$ –5.90 (*c* 1.81, CHCl₃) for a sample with 98:2 er. The absolute configuration was assigned by analogy to entry 4 in Table 3. Enantiomeric purity was determined by HPLC analysis in comparison with authentic racemic material (98:2 er shown below; chiralpak AD-H column (25 cm x 0.46 cm), 95/5 hexanes/*i*-PrOH, 0.3 mL/min, 220 nm).

⁽¹²⁾ Dambacher, J.; Bergdahl, M. J. Org. Chem. 2005, 70, 580-589.

(*R*,*E*)-3-(2-(Dimethyl(phenyl)silyl)-2-phenylethylidene)-4,4-dimethylcyclohexanone (21). IR (neat): 2959 (m), 1686 (s), 1253 (s) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.37-7.27 (5H, m), 7.19 (2H, t, *J* = 7.6 Hz), 7.08 (1H, t, *J* = 7.4 Hz), 6.95 (2H, d, *J* = 7.2 Hz), 5.69 (1H, d, *J* = 11.6 Hz), 3.16 (1H, d, *J* = 11.6 Hz), 3.04 (1H, d, *J* = 17.2 Hz), 2.73 (1H, dd, *J* = 17.2, 1.6 Hz), 2.33-2.27 (2H, m), 1.59 (2H, t, *J* = 6.8 Hz) 1.18 (3H, s), 1.15 (3H, s), 0.22 (3H, s), 0.19 (3H, s); ¹³C NMR (100 MHz, CDCl₃): δ 210.5, 142.6, 138.0, 137.3, 134.9, 129.9, 128.9, 128.2, 127.9, 125.4, 122.7, 43.0, 38.2, 38.0, 36.7, 28.5, 28.3, -3.7, -4.5; HRMS (ES⁺) Calcd for C₂₄H₃₀SiONa [M+Na]: 385.1964, Found: 385.1955. Optical rotation: $[\alpha]_D^{20}$ +16.0 (*c* 1.30, CHCl₃) for a sample with 96:4 er. The absolute configuration was assigned by analogy to entry 4 in Table 3. Enantiomeric purity was determined by HPLC analysis in comparison with authentic racemic material (96:4 er shown below; chiralpak AD-H column (25 cm x 0.46 cm), 99.3/0.7 hexanes/*i*-PrOH, 0.3 mL/min, 220 nm).

Retention time	Area	Area %	Retention time	Area	Area %
26.66	4291990	49.242	27.30	460079	3.836
30.61	4424187	50.758	29.47	11534330	96.164

(*R*,*E*)-3-(Dimethyl(phenyl)silyloxy)-3-styrylcyclohexanone (22). IR (neat): 2955 (m), 1716 (s), 1427 (m), 1251 (s) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.52-7.50 (2H, m), 7.37-7.21 (6H, m), 7.18-7.16 (2H, m), 6.37 (1H, d, *J* = 16.4 Hz), 6.11 (1H, d, *J* = 16.4 Hz), 2.65 (1H, d, *J* = 14 Hz), 2.61 (1H, d, *J* = 14 Hz), 2.91-2.33 (1H, m), 2.90-2.21 (1H, m), 2.11-2.00 (2H, m), 1.91-1.74 (2H, m), 0.35 (3H, s), 0.33 (3H, s); ¹³C NMR (100 MHz, CDCl₃): δ 210.2, 140.2, 136.8, 135.0, 134.1, 130.0, 129.9, 129.3, 128.6, 128.5, 127.2, 78.9, 54.1, 41.4, 38.1, 21.4, 1.6, 1.5; HRMS (ESI⁺) Calcd for C₂₂H₂₇SiO₂ [M+H]: 351.1780, Found: 351.1769. Optical rotation: [α]_D²⁰ +10.4 (*c* 0.90, CHCl₃) for a sample with 94.5:5.5 er. Enantiomeric purity was determined by HPLC analysis in comparison with authentic racemic material (94.5:5.5 er shownbelow; chiralpak AD-H column (25 cm x 0.46 cm), 99.3/0.7 hexanes/*i*-PrOH, 0.3 mL/min, 220 nm).

(2*S*,3*S*)-3-(Dimethyl(phenyl)silyl)-2-(hydroxy(phenyl)methyl)cyclopentanone (23). IR (neat): 3434 (w), 2955 (w), 2893 (w), 1724 (s), 1250 (s) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.45-7.42 (2H, m), 7.40-7.32 (3H, m), 7.29-7.19 (3H, m), 7.06-7.03 (2H, m), 4.83 (1H, d, *J* = 4.4 Hz), 3.86 (1H, bs), 2.53 (1H, dd, *J* = 9.6, 4.4 Hz), 2.15-2.06 (1H, m), 1.95-1.86 (2H, m), 1.66-1.57 (1H, m), 1.50-1.37 (1H, m), 0.22 (3H, s), 0.20 (3H, s); ¹³C NMR (100 MHz, CDCl₃): δ 225.2, 142.3, 137.6, 134.5, 130.1, 129.0, 128.7, 128.3, 127.3, 75.8, 56.2, 40.9, 24.4, 23.9, -4.0, -4.2; HRMS (ESI⁺) Calcd for C₂₀H₂₅SiO₂ [M+H]: 325.1624, Found: 325.1635. Optical rotation: $[\alpha]_D^{20}$ -15.1 (*c* 1.40, CHCl₃) for a sample with 6:1 dr.

(2*S*,3*S*)-3-(Dimethyl(phenyl)silyl)-2-(hydroxy(phenyl)methyl)cycloheptanone (24). Upon standing, the product undergoes retro-aldol reaction, as evidenced by HRMS and ¹H NMR to afford (*S*)-3-(dimethyl(phenyl)silyl)cycloheptanone (entry 3 in Table 2) in 95.5:4.5 er. HRMS of 24 (ESI⁺) Calcd for $C_{22}H_{32}NSiO_2$ [M+NH₄]: 370.2202, Found: 370.2204. The diastereomeric ratio (3:1 dr) was obtained through analysis of ¹H NMR spectra of the unpurified mixtures.

Preparation of (1R,4R)-4-(dimethyl(phenyl)silyl)-3,3-dimethyl-1-phenylcyclopentanol (26): An oven-dried vial (6 x 1 cm) under a dry N₂ atmosphere equipped with a stir bar was charged with 25 (Table 2, entry 1, 99:1 er) (0.12 mmol, 30 mg) and Et₂O (2 mL) was added and

the solution was allowed to cool to -78 °C. A solution of PhLi (78 µL, 0.13 mmol) in *n*-Bu₂O (1.71 M) was added at -78 °C. After 6 h at -50 °C, the reaction was quenched by the addition of 1M HCl solution (0.5 mL) and H₂O (2 mL) and the mixture was allowed to warm to 22 °C. Layers were separated, and the aqueous layer was washed with Et₂O (5 mL x 2). The combined organic layers were dried over MgSO₄ and filtered. The volatiles were removed *in vacuo* and the resulting light yellow oil was purified by silica gel chromatography (hexanes/Et₂O:3/1) to afford 31 mg (0.097 mmol, 85% yield) of **26** as a colorless oil (>25:1 dr). IR (neat): 3387 (w), 2953 (s), 2687 (m), 1250 (s) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.53-7.50 (2H, m), 7.44-7.41 (2H, m), 7.35-7.28 (5H, m), 7.21-7.18 (1H, m), 2.42 (1H, dd, *J* = 13.8, 8.6 Hz), 2.29 (1H, dd, *J* = 13.6, 13.6 Hz), 2.08 (1H, d, *J* = 13.6 Hz), 1.87 (1H, d, *J* = 14.0 Hz), 1.71 (1H, s), 1.42-1.37 (1H, m), 1.23 (3H, s), 0.97 (3H, s), 0.39 (3H, s), 0.35 (3H, s); ¹³C NMR (100 MHz, CDCl₃): δ 150.6, 140.1, 134.5, 129.5, 128.9, 128.4, 127.2, 125.1, 83.7, 62.8, 47.7, 44.3, 41.4, 31.6, 27.4, -1.7, - 1.9; HRMS (ES⁺) Calcd for C₂₁H₂₈SiONa [M+Na]: 347.1807, Found: 347.1811. Optical rotation: [α]_D²⁰ -21.0 (*c* 1.01, CHCl₃).

(1*R*,3*R*)-4,4-Dimethyl-1-phenylcyclopentane-1,3-diol (27). IR (neat): 3356 (m), 2957 (s), 2926 (s), 2869 (m), 1448 (s) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.46-7.43 (2H, m), 7.38-7.34 (2H, m), 7.31-7.26 (1H, m), 4.13 (1H, dd, *J* = 8.0, 6.0 Hz), 2.77 (1H, dd, *J* = 14.0, 6.0 Hz), 2.22 (1H, dd, *J* = 14.0, 6.0 Hz), 2.08 (2H, s), 1.16 (3H, s), 0.96 (3H, s); ¹³C NMR (100 MHz, CDCl₃): δ 143.8, 129.3, 128.4, 126.8, 92.6, 80.3, 50.5, 42.6, 42.0, 28.6, 23.6; Optical rotation: $[\alpha]_D^{20}$ –7.04 (*c* 0.800, CHCl₃) for a sample with 98:2 er. Enantiomeric purity was determined by HPLC analysis in comparison with authentic racemic material (98:2 er shown below; chiralpak AD-H column (25 cm x 0.46 cm), 90/10 hexanes/*i*-PrOH, 0.5 mL/min, 220 nm).

Methyl 2-((1*S*,2*S*)-2-(dimethyl(phenyl)silyl)-6-oxocyclohexyl)acetate (28) ¹³. IR (neat): 2951 (w), 2858 (w), 1735 (s), 1708 (s), 1428 (m) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.49-7.45 (2H, m), 7.40-7.33 (3H, m), 3.58 (3H, s), 2.78 (1H, dddd, J = 18.8, 9.6, 3.6, 0.8 Hz), 2.46-2.32 (3H, m), 2.72-2.13 (2H, m), 1.87-1.82 (1H, m), 1.82-1.56 (2H, m), 1.35 (1H, td, J = 12.8, 3.6 Hz), 0.38 (3H, s), 0.33 (3H, s); ¹³C NMR (100 MHz, CDCl₃): δ 212.9, 173.5, 138.5, 134.3, 130.0, 128.7, 52.2, 48.9, 42.5, 34.6, 32.7, 30.8, 28.2, -2.2, -3.3; HRMS (ES⁺) Calcd for C₁₇H₂₅SiO₃ [M+H]: 305.1573, Found: 305.1580. Optical rotation: [α]_D²⁰ -79.4 (*c* 2.33, CHCl₃) for a sample with 97.5:2.5 er. Enantiomeric purity was determined by HPLC analysis in comparison with authentic racemic material (97.5:2.5 er shown below; chiracel AS column (25 cm x 0.46 cm), 90/10 hexanes/*i*-PrOH, 0.5 mL/min, 220 nm).

⁽¹³⁾ For total synthesis of (+)-erysotramidine, see: (a) Tietze, L. F.; Tolle, N.; Kratzert, D.; Stalke, D. Org. Lett. **2009**, *11*, 5230–5233. (b) Blake, A. J.; Gill, C.; Greenhalgh, D. A.; Simpkins, N. S.; Zhang, F. Synthesis **2005**, *19*, 3287–3292.

Screening of ligands.