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1-O-Hexadecyl-2-(4-pentenoyl)-sn-glycero-3-phosphatidylcholine (8a). 1-O-Hexadecyl-2-lyso-sn-glycero-3-phosphatidylcholine (15 mg, 

0.03 mmol), that was dried on a vacuum pump equipped with a dry ice-acetone trap overnight at room temperature, was dissolved in freshly 

distilled CHCl3 (2 mL). 4-pentenoic acid (12.5 mg, 0.12 mmol), dicyclohexylcarbodiimide (DCC, 37.1 mg, 0.18 mmol) and N, 

N-dimehylaminopyridine (DMAP, 3.7 mg, 0.03 mmol) were added. The mixture was stirred at room temperature for 96 h under argon. The 

solvent was then removed by rotary evaporation, and the residue was purified by flash chromatography on silica with CHCl3/MeOH/H2O (16/9/1, 

TLC: Rf = 0.42) to give 8a (12.1 mg, 70%). 1H NMR (CDCl3/CD3OD = 1/1, 400 MHz): δ 5.73-5.86(1H), 5.09-5.16(1H), 4.94-5.07(2H), 

4.19-4.31 (2H), 3.93-4.07(2H), 3.58-3.64(4H), 3.39-3.52(2H), 3.22(9H), 2.46(t, J = 7.0 Hz, 2H), 2.38(t, J = 6.9 Hz, 2H), 1.50-1.60(2H), 

1.16-1.35(26H), 0.89(t, J = 6.8 Hz, 3H). ΗRMS (FAB): m/z calcd for C29H59NO7P+ (MH+) 564.4029, found 564.4010. 

1-O-Hexadecyl-2-(5-hexenoyl)-sn-glycero-3-phosphatidylcholine (8b). A procedure analogous to that described above for 8a was used to 

convert 5-hexenoic acid into 8b (71%) TLC: Rf = 0.17 in CHCl3/MeOH/H2O (16/9/1): 1H NMR (CDCl3/CD3OD = 1/1, 400 MHz): 

δ 5.69-5.80(1H), 5.08-5.18(1H), 4.96-5.06(2H), 4.19-4.29(2H), 3.92-4.06(2H), 3.56-3.65(4H), 3.39-3.52(2H), 3.22(s, 9H), 2.37(t, J = 7.5 Hz, 

3H), 2.11(td, J = 7.7 Hz, 6.8 Hz, 2H), 1.65-1.78(2H), 1.49-1.60(2H), 1.19-1.34(26H), 0.88(t, J = 6.8 Hz, 3H). ΗRMS (FAB): m/z calcd for 

C30H61NO7P+ (MH+) 578.4186, found 578.4196. 
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1-O-Hexadecyl-2-(9-decenoyl)-sn-glycero-3-phosphatidylcholine (8c). A procedure analogous to that described above for 8a was used to 

convert 9-decenoic acid into 8c (79%) TLC: Rf = 0.29 CHCl3/MeOH/H2O (16/9/1): 1H NMR (CDCl3/CD3OD =1/1, 400 MHz): δ 5.69-5.82(1H), 

5.16(m,1H), 4.96-5.02(2H), 4.17-4.27(2H), 3.92-4.05(2H), 3.56-3.65(4H), 3.38-3.52(2H), 3.23(s, 9H), 2.35(t, J = 7.5 Hz, 2H), 2.04(td, J = 7.8 

Hz, 6.7 Hz, 2H), 1.54-1.63(2H), 1.46-1.54(2H), 1.17-1.39(34H), 0.89(t, J = 6.6 Hz, 3H). ΗRMS (FAB): m/z calcd for C34H69NO7P+ (MH+) 

634.4811, found 634.4813. 

1-O-Hexadecyl-2-(4-oxobutyroyl)-sn-glycero-3-phosphatidylcholine (OB-PAF, 2a). A solution of the compound 8a (12.1mg, 0.021 mmol) in 

2 mL of a 2:1 mixture of MeOH/CH2Cl2 was cooled to -78 ºC with magnetic stirring. Ozone was bubbled through the solution until a blue color 

appeared and persisted for another 20 min. The solution was purged with N2 to remove the excess ozone. While still at -78 ºC, Me2S (17 μL) was 

added, and the solution was then allowed to warm to room temperature. The solvents were removed by rotary evaporation with heptane (3×5 mL) 

to afford aldehyde phospholipid 2a (7.6 mg, 63%). 1H NMR (CDCl3/CD3OD = 1/1, 400 MHz): δ 9.77(1H), 5.12-5.22(1H), 4.21-4.33(2H), 

3.93-4.09(2H), 3.57-3.65(4H), 3.41-3.50(2H), 3.22(s, 9H), 2.56-2.92(2H), 2.42-2.54(1H), 1.79-2.00(1H), 1.55(t, J = 6.5 Hz, 2H), 1.24-1.36(26H), 

0.89(t, J = 6.7 Hz, 3H). ΗRMS (FAB): m/z calcd for C28H57NO8P+ (MH+) 566.3822, found 566.3830. 

1-O-Hexadecyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphatidylcholine (OV-PAF, 2b). This phospholipid was prepared similarly to 2a using the 
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compound 8b (17mg, 0.029 mmol) and Me2S (22 μL) to give 2b (14.7 mg, 87%). 1H NMR (CDCl3, 400 MHz): δ 9.69-9.71(s, 1H), 

5.04-5.18(1H), 4.23(s, 2H), 3.81-4.04(2H), 3.68-3.79(2H), 3.40-3.56(2H), 3.25-3.33(11H), 2.49(t, J = 7.0, 2H), 2.22-2.41(2H), 1.86(tt, J=7.0, 7.0, 

2H), 1.44(t, J = 6.3 Hz, 2H), 1.11-1.31(26H), 0.81(t, J = 6.6 Hz, 3H). ΗRMS (FAB): m/z calcd for C29H59NO8P+ (MH+) 580.3978, found 

580.3944. 

1-O-Hexadecyl-2-(9-oxononanoyl)-sn-glycero-3-phosphatidylcholine (ON-PAF, 2c). This aldehyde was prepared similarly to 2a using the 

compound 8c (35 mg, 0.055 mmol) and Me2S (42 μL) to give 2c (25 mg, 71%).  1H NMR (CDCl3, 400 MHz): δ 9.74(t, J = 1.75 Hz, 1H), 

5.15(m, 1H), 4.23-4.33(2H), 3.89-4.01(2H), 3.74-3.81(2H), 3.49-3.65(2H), 3.43-3.49(2H), 3.39(s, 9H), 2.45(td, J = 7.3, 1.75 Hz, 2H), 2.33(t, J = 

7.4 Hz, 2H), 1.63-1.65(4H), 1.53(t, J = 6.8 Hz, 2H), 1.23-1.38(32H), 0.90(t, J = 6.8 Hz, 3H). ΗRMS (FAB): m/z calcd for C33H67NO8P+ (MH+) 

636.4604, found 636.4529. 

1-O-Hexadecyl-2-succinoyl-sn-glycero-3-phosphatidylcholine (S-PAF, 3a). A mixture of lyso-PAF (15 mg, 0.031 mmol) and succinic 

anhydride (22 mg, 0.22 mmol), that was dried on a vacuum pump overnight at room temperature, was dissolved in dry CHCl3 (1.5 mL). DMAP 

(12 mg, 0.098 mmol) was added to the solution. The mixture was then stirred at room temperature under argon for 96 h. The mixture was 

concentrated, and the residue was chromatographed on silica with CHCl3/MeOH/H2O (16/9/1, TLC: Rf = 0.05) to give 3a (10 mg, 55%). 1H 



S9 

NMR (CDCl3/CD3OD = 1:1, 400 MHz): δ 5.17(m, 1H), 4.26(s, 2H), 3.92-4.10(2H), 3.54-3.60(4H), 3.37-3.52(2H), 3.22(s, 9H), 2.50-2.70(4H), 

1.55(t, J = 6.9 Hz, 2H), 1.21-1.27(26H), 0.89(t, J = 6.8 Hz, 3H). ΗRMS (FAB): m/z calcd for C28H57NO9P+ (MH+) 582.3771, found 582.3771. 

1-O-Hexadecyl-2-glutaroyl-sn-glycero-3-phosphatidylcholine (G-PAF, 3b). This acid phospholipid was prepared similarly to 3a using 

lyso-PAF (20mg, 0.042 mmol), glutaric anhydride (38.3 mg, 0.34 mmol) and DMAP (5.1 mg, 0.042 mmol) in dry CHCl3 (2 mL). The crude 

product was purified by flash chromatography on a silica gel column with CHCl3/MeOH/H2O (15/9/1, TLC: Rf  = 0.21) to afford 3b (12.4 mg, 

50%). 1H NMR (CDCl3/CD3OD = 1:1, 400 MHz): δ 5.18(m, 1H), 4.18-4.25(s, 2H), 3.94-4.08 (2H), 3.58-3.64(4H), 3.39-3.52(2H), 3.22(s, 9H), 

2.36-2.48(4H), 1.94(tt, J = 7.0 Hz, 7.0 Hz, 2H), 1.55(t, J = 6.4 Hz, 2H), 1.21-1.31(26H), 0.89(t, J = 6.8Hz, 3H). ΗRMS (FAB): m/z calcd for 

C29H59NO9P+ (MH+) 596.3927, found 596.3916. 

1-O-Hexadecyl-2-azelayl-sn-glycero-3-phosphatidylcholine (A-PAF, 3c). To a magnetic stirred solution of ON-PAF (2c) (15.2 mg, 0.024 

mmol) in t-BuOH-H2O (5:1, v/v, 0.4 mL) was added solution containing NaH2PO4 (4.78 mg, 0.035 mmol), 2-methyl-2-butene(136 μL, 0.27 

mmol, 2M solution in THF), and NaClO2 (7.23 mg, 0.08 mmol) in t-BuOH-H2O (5:1, v/v, 0.4 mL). The resulting mixture was stirred for 2 h at 

room temperature under Argon. The crude product was purified by flash chromatography on a silica gel column (CHCl3/MeOH/H2O, 15/9/1, 

TLC: Rf = 0.17) to give A-PAF (3c, 9.9 mg, 64%). 1H NMR (CDCl3/CD3OD = 1:1, 400 MHz): δ 5.12 (m, 1H), 4.21(s, 2H), 3.88-4.04(2H), 
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3.53-3.62(4H), 3.35-3.49(2H), 3.19(s, 9H), 2.31(t, J = 7.4 Hz, 4H), 1.64-1.46(6H), 1.35-1.20(32H), 0.85(t, J = 6.8 Hz, 3H). ΗRMS (FAB): m/z 

calcd for C33H67NO9P+ (MH+) 652.4553, found 652.4550. 

1-O-Hexadecyl-2-[3-(2-furyl)propanoyl]-sn-glycero-3-phosphatidylcholine (12a). A mixture of 3-(2-furyl)propionic acid (23 mg, 0.16 mmol) 

and lyso-PAF (30 mg, 0.062 mmol), that was dried on a vacuum pump equipped with dry ice-acetone trap for 10 h at room temperature, was 

dissolved in dry CHCl3 (2 mL, shaken with P2O5 for 0.5 h and distilled). DCC (137 mg, 0.66 mmol) and DMAP (13.7 mg, 0.11 mmol) were 

added. The mixture was stirred for 48 h under argon. The mixture was then concentrated, and the residue was purified by flash chromatography 

on silica (CHCl3/MeOH/H2O, 16:9:1, TLC: Rf = 0.36) to afford the furyl phospholipid 12a (32.4 mg, 86%). 1H NMR (CDCl3, 200 MHz): 

δ 7.28-7.30(1Η), 6.26(dd, J = 3.1 Ηz, 1.8 Hz, 1H), 6.02(d, J = 3.1 Hz, 1H), 5.15(m, 1H), 4.26(s, 2H), 3.85-3.98(2H), 3.70-3.85(2H), 3.61(s, 2H), 

3.50-3.58(2H), 3.33(s, 9H), 2.94(t, J = 7.4 Hz, 2H), 2.66(t, J =7.7 Hz, 2H), 1.50(2H), 1.20-1.28(22H), 0.87(t, J = 6.6 Hz, 3H). ΗRMS (FAB): m/z 

calcd for C31H59NO8P+ (MH+) 604.3978, found 604.3960. 

1-O-Hexadecyl-2-[4-(2-furyl)butanoyl]-sn-glycero-3-phosphatidylcholine (12b). A procedure analogous to that described above for 12a was 

used to convert 4-(2-furyl)butanoic acid into 12b (85%) TLC: Rf = 0.40 (CHCl3/MeOH/H2O, 16:9:1). 1H NMR (CDCl3/CD3OD = 1/1, 400 

MHz): δ 7.28(d, J = 1.8 Hz, 1H), 6.24(dd, J = 3.1 Hz, 1.8 Hz, 1H), 5.99(d, J = 3.1 Hz, 1H), 5.14(m, 1H), 4.21(bs, 2H), 3.89-4.02(2H), 
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3.51-3.62(4H), 3.35-3.49(2H), 3.18(bs, 9H), 2.65(t, J = 7.4 Hz, 2H), 2.36(t, J = 7.4 Hz, 2H), 1.93(tt, J = 7.4 Hz, 7.4 Hz, 2H), 1.45-1.56(2H), 

1.2-1.3(26H), 0.85(t, J = 6.8 Hz, 3H). ΗRMS (FAB): m/z calcd for C32H61NO8P+ (MH+) 618.4135, found 618.4140. 

1-O-Hexadecyl-2-[8-(2-furyl)octanoyl]-sn-glycero-3-phosphatidylcholine (12c). A procedure analogous to that described above for 12a was 

used to convert 8-(2-furyl)octanoic acid into 12c (79%) TLC: Rf = 0.39 (CHCl3/MeOH/H2O, 16:9:1). 1H NMR (CDCl3/CD3OD = 1/1, 300 MHz): 

δ 7.27(dd, J = 1.86 Hz, 0.82 Hz, 1H), 6.24(dd, J = 3.12 Hz, 1.84 Hz, 1H), 5.94(dd, J = 3.12 Hz, 0.86 Hz, 1H), 5.14(m, 1H), 4.14-4.30(2H), 

3.90-4.02(2H), 3.50-3.62(4H), 3.49-3.37(2H), 3.20(bs, 9H), 2.59(t, J = 7.4 Hz, 2H), 2.33(t, J = 7.3 Hz, 2H), 1.40-1.70(6H), 1.20-1.34(32H), 

0.86(t, J = 6.6 Hz, 3H). ΗRMS (FAB): m/z calcd for C36H69NO8P+ (MH+) 674.4761, found 674.4762. 

1-O-Hexadecyl-2-(4-oxo-7-oxohept-5-enoyl)-sn-glycero-3-phosphatidylcholine (KOHA-PAF, 6a). N-Bromosuccinimide (NBS, 28.7 mg, 

0.16 mmol) and pyridine (18.6 μL, 0.22 mmol) were sequentially added to a solution of furyl phosphatidylcholine 12a (64.9 mg, 0.11mmol) in 

THF/acetone/water (5/4/2) at -20 ºC. The resulting mixture was stirred for 1 h at this temperature, and kept at room temperature for 6 h. The 

solvent was then removed quickly, and the residue was purified on a silica gel column (CHCl3/MeOH/H2O, 16:9:1, TLC: Rf = 0.13) affording 

KOHA-PAF (52.8 mg, 79%). 1H NMR (CDCl3, 400 MHz): δ 9.78(d, J = 7.3 Hz, 1H), 6.97(d, J = 16.2 Hz, 1H), 6.79(dd, J = 16.2 Hz, 7.3Hz, 1H), 

5.09(m, 1H), 4.26(bs, 2H), 3.83-3.99(2H), 3.78(bs, 2H), 3.47-3.51(2H), 3.25-3.42(11H), 2.91-3.11(2H), 2.58-2.79(2H), 1.47(t, J=6.2 Hz, 2H), 
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1.14-1.32(26H), 0.83(t, J = 6.8 Hz, 3H). ΗRMS (FAB): m/z calcd for C31H59NO9P+ (MH+) 620.3922, found 620.3914. 

1-O-Hexadecyl-2-(5-oxo-8-oxooct-6-enoyl)-sn-glycero-3-phosphatidylcholine (KOOA-PAF, 6b). A procedure analogous to that described 

above for 6a was used to convert 12b into KOOA-PAF (6b, 68%): TLC Rf = 0.20(CHCl3/MeOH/H2O, 16:9:1). 1H NMR (CDCl3, 200 MHz): 

δ 9.80(d, J = 7.0 Hz, 1H), 6.97(d, J = 16.1 Hz, 1H), 6.82(dd, J = 16.2 Hz, 6.9 Hz, 1H), 5.16(m, 1H), 4.32(bs, 2H), 3.90(bs, 4H), 3.42-3.60(2H), 

3.39(11H), 2.87(t, J = 7.0 Hz, 2H), 2.21-2.60(2H), 1.95(t, J = 6.7Hz, 2H), 1.51(2H), 1.10-1.30(26H), 0.88(t, J = 6.7 Hz, 3H). ΗRMS (FAB): m/z 

calcd for C32H61NO9P+ (MH+) 634.4078, found 634.4063. 

1-O-Hexadecyl-2-(9-oxo-12-oxododec-10-enoyl)-sn-glycero-3-phosphatidylcholine (KODA-PAF, 6c). A procedure analogous to that 

described above for 6a was used to convert 12c into 6c (KODA-PAF, 70%) TLC: Rf = 0.17 (CHCl3/MeOH/H2O, 16:9:1). 1H NMR (CDCl3 + 

CD3OD, 300 MHz): δ 9.72 (1Η), 6.28-7.04 (2Η), 5.13(m, 1H), 4.20(bs, 2H), 3.92(2H), 3.50-3.70(4H), 3.32-3.50(2H), 3.15(9H), 2.65-2.80 (1H), 

2.50-2.65(1H), 2.20-2.40(2H), 1.40-1.70(6H), 1.10-1.40(32H), 0.86(3H). ΗRMS (FAB): m/z calcd for C36H69NO9P+ (MH+) 690.4704, found 

690.4704. 

1-O-Hexadecyl-2-(7-carboxy-4-oxohep-5-enoyl)-sn-glycero-3-phosphatidylcholine (KHdiA-PAF, 7a). To a magnetically stirred solution of 

KOHA-PAF (6a) (11.9 mg, 0.019 mmol) in t-BuOH-H2O (5:1, v/v, 1mL) were added NaH2PO4 (3.97 mg, 0.029 mmol), 2-methyl-2-butene (95.8 
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μL, 0.19 mmol, 2 M solution in THF), and NaClO2 (5.27 mg, 0.059 mmol). The resulting mixture was stirred for 2 h at room temperature under 

Ar. The solvent was removed. The residue was purified by the flash chromatography on a silica gel column (CHCl3/MeOH/H2O, 16:9:1, TLC: Rf 

= 0.12) to give KHdiA-PAF (7.2 mg, 60%). 1H NMR (CDCl3/CD3OD = 1/1, 400 MHz): δ 6.68-6.75(2H), 5.08(m, 1H), 4.12-4.24(2H), 

3.87-4.03(2H), 3.50-3.60(4H), 3.32-3.46(2H), 3.16(bs, 9H), 2.95-3.06(1H), 2.81-2.91(1H), 2.61-2.73(1H), 2.50-2.61(1H), 1.48(t, J = 7.1 Hz, 2H), 

1.15-1.30(26H), 0.82(t, J = 6.7 Hz, 3H). ΗRMS (FAB): m/z calcd for C31H59NO10P+ (MH+) 636.3871, found 636.3875. 

1-O-Hexadecyl-2-(8-carboxy-5-oxooct-6-enoyl)-sn-glycero-3-phosphatidylcholine (KOdiA-PAF, 7b). A procedure analogous to that 

described above for 7a was used to convert KOOA-PAF (6b) into KOdiA-PAF (7b, 62%) TLC: Rf = 0.12 (CHCl3/MeOH/H2O, 16:9:1). 1H NMR 

(CDCl3/CD3OD = 1/1, 200 MHz): δ 6.76(s, 1H), 6.75(s, 1H), 5.15(m, 1H), 4.24(bs, 2H), 3.92-4.10(2H), 3.50-3.65(4H), 3.35-3.50(2H), 3.21(bs, 

9H), 2.74(t, J = 7.0 Hz, 2H), 2.39(t, J = 7.4 Hz, 2H), 1.80-2.00(2H), 1.40-1.65(2H), 1.10-1.40(26H), 0.86(t, J= 6.5 Hz, 3H). ΗRMS (FAB): m/z 

calcd for C32H61NO10P+ (MH+) 650.4028, found 650.4023. 

1-O-Hexadecyl-2-(12-carboxy-9-oxodec-10-enoyl)-sn-glycero-3-phosphatidylcholine (KDdiA-PAF, 7c). A procedure analogous to that 

described above for 7a was used to convert KODA-PAF (6c) into KDdiA-PAF (7c, 42%) TLC: Rf = 0.14 (CHCl3/MeOH/H2O, 15:9:1). 1H NMR 

(CDCl3/CD3OD = 1/1, 400 MHz): δ 6.75(2H), 5.13(m, 1H), 4.23(2H), 3.89-4.04(2H), 3.52-3.65(4H), 3.38-3.51(2H), 3.20(bs,9H), 2.63(t, J = 7.3 
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Hz, 2H), 2.32(t, J = 7.3 Hz, 2H), 1.55-1.67(4H), 1.46-1.55(2H), 1.16-1.38(32H), 0.86(t, J = 6.6 Hz, 3H).  ΗRMS (FAB): m/z calcd for 

C36H69NO10P+ (MH+) 706.4654, found 706.4640. 

1-O-Hexadecyl-2-[6-(2, 2-dimethyl-1, 3-dioxolan-4-yl)-4-(tetrahydro-2H-pyran-2-yloxy)hex-5-enoyl]-sn-glycero-3-phosphatidylcholine 

(10a). A mixture of 4-(2-oxanyloxy)-6-(3,3-dimethyl-2,4-dioxolanyl)hex-5-enoic acid (62 mg, 0.20 mmol) and lyso-PAF (32 mg, 0.067 mmol), 

that was dried on a vacuum pump equipped with dry ice-acetone trap for 10 h at room temperature, was dissolved in dry CHCl3 (2 mL, shaken 

with P2O5 for 0.5 h and distilled). DCC (81.7 mg, 0.39 mmol) and DMAP (8.06 mg, 0.067 mmol) were added. The mixture was stirred for 48 h 

under argon. The mixture was then concentrated by rotary evaporation, and the residue was purified by flash chromatography on silica 

(CHCl3/MeOH/H2O, 16:9:1, TLC: Rf  = 0.14) to afford HOHA-PAF precursor 10a (38.4 mg, 75%). 1H NMR (CDCl3/CD3OD = 1/1, 400 MHz): 

δ 5.48-5.90(2H), 5.12(m, 1H), 4.47-4.55(1H), 4.21(2H), 4.04-4.17(2H), 3.89-4.02(2H), 3.77-3.88(1H), 3.52-3.62(5H), 3.35-3.51(4H), 

3.15-3.23(9H), 2.33-2.54(2H), 1.74-1.96(3H), 1.62-1.74(2H), 1.45-1.62(5H), 1.39(s, 3H), 1.35(s,3H), 1.20-1.35(26H), 0.85(t, J = 6.8 Hz, 3H). 

ΗRMS (FAB): m/z calcd for C40H76NNaO11P+ (MNa+) 800.5048, found 800.5048. 

1-O-Hexadecyl-2-[7-(2, 2-dimethyl-1, 3-dioxolan-4-yl)-5-(tetrahydro-2H-pyran-2-yloxy)hept-6-enoyl]-sn-glycero-3-phosphatidylcholine 

(10b).  A procedure analogous to that described above for 10a was used to convert 
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5-(2-oxanyloxy)-7-(3,3-dimethyl-2,4-dioxolanyl)hept-6-enoic acid into the HOOA-PAF precursor 10b (79%) TLC: Rf = 0.28 

(CHCl3/MeOH/H2O, 16:9:1). 1H NMR (CDCl3, 400 MHz): δ 5.51-5.85(2H), 5.10(m, 1H), 4.53-4.67(1H), 4.45-4.53(1H), 4.28(bs, 2H), 

4.00-4.14(2H), 3.86-3.98(2H), 3.73-3.86(3H), 3.49-3.61(3H), 3.38-3.49(3H), 3.36(bs, 9H), 2.24-2.36(t, J = 7.7 Hz, 2H), 1.43-1.87(12H), 1.39(s, 

3H), 1.36(s, 3H), 1.20-1.36(26H), 0.85(t, J = 6.8 Hz, 3H). ΗRMS (FAB): m/z calcd for C41H79NO11P+ (MH+) 792.5385, found 792.5386. 

1-O-Hexadecyl-2-[11-(2, 2-dimethyl-1, 

3-dioxolan-4-yl)-9-(tetrahydro-2H-pyran-2-yloxy)-undec-10-enoyl]-sn-glycero-3-phosphatidylcholine (10c). A procedure analogous to that 

described above for 10a was used to convert 9-(2-oxanyloxy)-11-(3,3-dimethyl-2,4-dioxolanyl)undec-10-enoic acid into the HODA-PAF 

precursor 10c (67%) TLC: Rf = 0.28 (CHCl3/MeOH/H2O, 16:9:1). 1H NMR (CDCl3/CD3OD = 1/1, 400 MHz): δ 5.45-5.78(2H), 5.05(m, 1H), 

4.45(dd, J = 13.6 Hz, 6.2 Hz, 1H), 4.10-4.19(2H), 3.82-4.06(4H), 3.73-3.82(1H), 3.45-3.55(5H), 3.27-3.45(4H), 3.12(s, 9H), 2.24(t, J = 7.5 Hz, 

2H), 1.68-1.82(1H), 1.36-1.67(11H), 1.32(s, 3H), 1.29(s, 3H), 1.13-1.26(34H), 0.79(t, J = 6.8 Hz, 3H). ΗRMS (FAB): m/z calcd for 

C45H86NNaO11P+ (MNa+) 870.5831, found 870.5838. 

1-O-Hexadecyl-2-(4-hydroxy-7-oxohept-5-enoyl)-sn-glycero-3-phosphatidylcholine (HOHA-PAF, 4a). A solution of the compound 10a 

(38.4 mg, 0.05mmol) in acetic acid/water (2:1, v/v, 2.2 mL) was stirred magnetically for 4 h at 40 ºC, and then the solvent was removed by 
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rotary evaporation under reduced pressure. The last traces of HOAc were removed by azeotropic distillation with n-heptane (3 × 2 mL) under 

high vacuum. Dry methylene chloride (2 mL) and Na2CO3 (10.4 mg, 0.098 mmol) were added to the residue. The solution was stirred 

magnetically at -78 ºC under an argon atmosphere, and Pb(OAc)4 (24 mg, 0.058 mmol) was added. The resulting solution was stirred for 30 min, 

then the solvent was removed, and the residue was purified by flash chromatography on silica (CHCl3/MeOH/H2O, 15:9:1, TLC: Rf = 0.32) to 

give HOHA-PAF (4a, 23.8 mg, 77%). 1H NMR (CDCl3/CD3OD = 1/1, 400 MHz): δ 9.53(d, J = 8.0 Hz, 1H), 6.92(dd, J = 15.6 Hz, 4.4 Hz, 1H), 

6.29(dd, J = 15.6 Hz, 8.1 Hz, 1H), 5.14(m,1H), 4.39-4.47(1H), 4.21(bs, 2H), 3.90-4.06(2H), 3.54-3.60(4H), 3.35-3.48(2H), 3.19(9H), 

2.39-2.61(2H), 1.93-2.05(1H), 1.72-1.88(1H), 1.51(t, J = 6.1 Hz, 2H), 1.19-1.30(26H), 0.85(t, J = 6.6 Hz, 3H).  ΗRMS (FAB): m/z calcd for 

C31H61NO9P+ (MH+) 622.4084, found 622.4088. 

1-O-Hexadecyl-2-(5-hydroxy-8-oxooct-6-enoyl)-sn-glycero-3-phosphatidylcholine (HOOA-PAF, 4b). A procedure analogous to that 

described above for 4a was used to convert 10b into (CHCl3/MeOH/H2O, 16:9:1, TLC: Rf = 0.18) to give HOOA-PAF (4b, 80%). 1H NMR 

(CDCl3/CD3OD = 1/1, 400 MHz): δ 9.52(d, J = 8.0 Hz, 1H), 6.92(ddd, J = 15.5 Hz, 4.4 Hz, 1.2 Hz, 1H), 6.28(ddd, J = 15.5 Hz, 8.0 Hz, 1.4 Hz, 

1H), 5.14(m, 1H), 4.33-4.39(1H), 4.20(bs, 2H), 3.88-4.05(2H), 3.53-3.60(4H), 3.33-3.48(2H), 3.18(9H), 2.31-2.45(2H), 1.55-1.83(4H), 

1.46-1.55(2H), 1.19-1.30(26H), 0.85(t, J = 6.7 Hz, 3H). ΗRMS (FAB): m/z calcd for C32H63NO9P+ (MH+) 636.4240, found 636.4236. 
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1-O-Hexadecyl-2-(9-hydroxy-12-oxododec-10-enoyl)-sn-glycero-3-phosphatidylcholine (HODA-PAF, 4c). A procedure analogous to that 

described above for 4a was used to convert 10c into HODA-PAF (4c, 86%) TLC: Rf = 0.26 (CHCl3/MeOH/H2O, 15:9:1). 1H NMR 

(CDCl3/CD3OD = 1/1, 400 MHz): δ 9.52(d, J = 8.0 Hz, 1H), 6.91(dd, J = 15.6 Hz, 4.6 Hz, 1H), 6.26(ddd, J = 15.6 Hz, 8.0 Hz, 1.3 Hz, 1H), 

5.12(m, 1H), 4.30-4.37(1H), 4.21(bs, 2H), 3.88-4.02(2H), 3.53-3.62(4H), 3.35-3.49(2H), 3.18(9H), 2.31(t, J = 7.5 Hz, 2H), 1.44-1.71(6H), 

1.12-1.44(34H), 0.85(t, J = 6.6 Hz, 3H). ΗRMS (FAB): m/z calcd for C36H71NO9P+ (MH+) 692.4866, found 692.4829. 

1-O-Hexadecyl-2-(4-hydroxy-7-carboxyhept-5-enoyl)-sn-glycero-3-phosphatidylcholine (HHdiA-PAF, 5a). A procedure analogous to that 

described above for 7a was used to convert 4a into HHdiA-PAF (5a, 60%) TLC: Rf = 0.09 (CHCl3/MeOH/H2O, 15:9:1). 1H NMR 

(CDCl3/CD3OD = 1/1, 400 MHz): δ 6.75(ddd, J = 15.7 Hz, 5.1 Hz, 2.2 Hz, 1H), 5.98(dd, J = 15.6 Hz, 1.6 Hz, 1H), 5.13(m, 1H), 4.24-4.31(1H), 

4.21(bs, 2H), 3.90-4.05(2H), 3.53-3.61(4H), 3.35-3.48(2H), 3.18(9H), 2.36-2.53(2H), 1.85-1.96(1H), 1.72-1.85(1H), 1.51(t, J = 7.0 Hz, 2H), 

1.21-1.28(26H), 0.85(t, J = 6.8 Hz, 3H). ΗRMS (FAB): m/z calcd for C31H61NO10P+ (MH+) 638.4033, found 638.4003. 

1-O-Hexadecyl-2-(5-hydroxy-8-carboxyoct-6-enoyl)-sn-glycero-3-phosphatidylcholine (HOdiA-PAF, 5b). A procedure analogous to that 

described above for 7a was used to convert 4b into HOdiA-PAF (5b, 65%)  TLC: Rf = 0.22 (CHCl3/MeOH/H2O, 12:9:1.5). 1H NMR 

(CDCl3/CD3OD = 1/1, 400 MHz): δ 6.51(ddd, J = 15.7 Hz, 5.9 Hz, 1.0 Hz, 1H), 5.94 (dd, J = 15.5 Hz, 1.2 Hz, 1H), 5.14(m, 1H), 4.09-4.27(3H), 
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3.88-4.05(2H), 3.52-3.63(4H), 3.35-3.48(2H), 3.18(9H), 2.32-2.41(2H), 1.60-1.77(2H), 1.44-1.60(4H), 1.19-1.29(26H), 0.85(t, J = 7.0 Hz, 3H). 

ΗRMS (FAB): m/z calcd for C32H62NO10P+ (MH+) 652.4190, found 652.4172. 

1-O-Hexadecyl-2-(9-hydroxy-12-carboxydodec-10-enoyl)-sn-glycero-3-phosphatidylcholine (HDdiA-PAF, 5c). A procedure analogous to 

that described above for 7a was used to convert 4c into HDdiA-PAF (5c, 61%) TLC: Rf = 0.13 (CHCl3/MeOH/H2O, 15:9:1). 1H NMR 

(CDCl3/CD3OD = 1/1, 400 MHz): δ 6.77(dd, J = 15.6 Hz, 5.4 Hz, 1H), 5.93(dd, J = 15.7 Hz, 1.4 Hz, 1H), 5.10(m, 1H), 4.12-4.25(3H), 

3.87-4.01(2H), 3.50-3.61(4H), 3.34-3.48(2H), 3.17(9H), 2.30(t, J = 7.4 Hz, 2H), 1.57(t, J = 7.5 Hz, 2H), 1.46-1.54(4H), 1.18-1.33(34H), 0.84(t, J 

= 6.8 Hz, 3H). ΗRMS (FAB): m/z calcd for C36H71NO10P+ (MH+) 708.4816, found 708.4792. 

1-O-Hexadecyl-2-tridecanoyl-sn-glycero-3-phosphatidylcholine (C13-PAF). 1-O-Hexadecyl-2-lyso-sn-glycero-3-phosphatidylcholine (16 mg, 

0.03 mmol), which was dried on a vacuum pump equipped with a dry ice-acetone trap overnight at room temperature, was dissolved in freshly 

distilled CHCl3 (2 mL). Tridecanoic acid (72 mg, 0.33 mmol), DCC (40 mg, 0.19 mmol) and DMAP (4.0 mg, 0.033 mmol) were added. The 

mixture was stirred at room temperature for 96 h under argon. The solvent was then removed by rotary evaporation and the residue was purified 

by flash chromatography on silica with CHCl3/MeOH/H2O (16/9/1, TLC: Rf = 0.26) to give C13-PAF (13 mg, 58%). H NMR (CDCl3/CD3OD = 

1/1, 400 MHz): δ 5.12(m, 1H), 4.17-4.24(2H), 3.89-4.01(2H), 3.55-3.69(4H), 3.33-3.49(2H), 3.18(9H), 2.28-2.34(2H), 1.59(t, J = 7.11 Hz, 2H), 
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1.51(t, J = 7.11 Hz, 2H), 1.21-1.29(44H), 0.85(t, J = 6.70 Hz, 6H). ΗRMS (FAB): m/z calcd for C37H77NO7P+ (MH+) 678.5438, found 678.5423. 

1-O-Hexadecyl-2-linoleoyl-sn-glycero-3-phosphatidylcholine (LA-PAF). 1-O-Hexadecyl-2-lyso-sn-glycero-3-phosphatidylcholine (25 mg, 

0.052 mmol), which was dried on a vacuum pump equipped with a dry ice-acetone trap overnight at room temperature, was dissolved in freshly 

distilled CHCl3 (2 mL). Linoleic acid (145.6 mg, 0.52 mmol), DCC (62.4 mg, 0.30 mmol) and DMAP (6.24 mg, 0.051 mmol) were added. The 

mixture was stirred at room temperature for 96 h under argon. The solvent was then removed by rotary evaporation and the residue was purified 

by flash chromatography on silica with CHCl3/MeOH/H2O (16/9/1, TLC: Rf = 0.29) to give LA-PAF (25.5 mg, 66%). H NMR (CDCl3/CD3OD = 

1/1, 400 MHz): δ 5.23-5.38(4H), 5.12(m, 1H), 4.21(2H), 3.88-4.02(2H), 3.53-3.60(4H), 3.35-3.49(2H), 3.18(bs, 9H), 2.74(t, J = 6.18 Hz, 2H), 

2.31(td, J = 7.4 Hz, 1.8 Hz, 2H), 1.98-2.07(4H), 1.59(t, J = 6.5 Hz, 1H), 1.51(t, J = 6.5 Hz, 1H), 1.20-1.37(40H), 0.79-0.90(6H). ΗRMS (FAB): 

m/z calcd for C42H83NO7P+ (MH+) 744.5907, found 744.5907.
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Figure S1. 1H-NMR (400 M, CDCl3+CD3OD) of 1-O-Hexadecyl-2-(4-pentenoyl)-sn-glycero-3-phosphatidylcholine (8a). 
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Figure S2. 13C-NMR (100 M, CDCl3+CD3OD) of 1-O-Hexadecyl-2-(4-pentenoyl)-sn-glycero-3-phosphatidylcholine (8a). 
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Figure S3. 1H-NMR (400 M, CDCl3+CD3OD) of 1-O-Hexadecyl-2-(5-hexenoyl)-sn-glycero-3-phosphatidylcholine (8b). 
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Figure S4. 13C-NMR (100 M, CDCl3+CD3OD) of 1-O-Hexadecyl-2-(5-hexenoyl)-sn-glycero-3-phosphatidylcholine (8b). 
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Figure S5. 1H-NMR (400 M, CDCl3+CD3OD) of 1-O-Hexadecyl-2-(9-decenoyl)-sn-glycero-3-phosphatidylcholine (8c). 
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Figure S6. 13C-NMR (100 M, CDCl3+CD3OD) of 1-O-Hexadecyl-2-(9-decenoyl)-sn-glycero-3-phosphatidylcholine (8c). 
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Figure S7. 1H-NMR (400 M, CDCl3+CD3OD) of OB-PAF (2a). 
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Figure S8. 13C-NMR (75 M, CDCl3) of OB-PAF (2a). 
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Figure S9. 1H-NMR (400 M, CDCl3+CD3OD) of OV-PAF (2b). 
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Figure S10. 13C-NMR (75 M, CDCl3) of OV-PAF (2b). 
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Figure S11. 1H-NMR (400 M, CDCl3+CD3OD) of ON-PAF (2c). 
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Figure S12. 13C-NMR (75 M, CDCl3) of ON-PAF (2c). 
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Figure S13. 1H-NMR (400 M, CDCl3+CD3OD) of S-PAF (3a). 
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Figure S14. 13C-NMR (75 M, CDCl3+CD3OD) of S-PAF (3a). 
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Figure S15. 1H-NMR (400 M, CDCl3+CD3OD) of G-PAF (3b). 
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Figure S16. 13C-NMR (100 M, CDCl3+CD3OD) of G-PAF (3b). 
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Figure S17. 1H-NMR (400 M, CDCl3+CD3OD) of A-PAF (3c). 
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Figure S18. 13C-NMR (100 M, CDCl3+CD3OD) of A-PAF (3c). 
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Figure S19. 1H-NMR (200 M, CDCl3) of 1-O-Hexadecyl-2-[3-(2-furyl)propanoyl]-sn-glycero-3-phosphatidylcholine 
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Figure S20. 13C-NMR (50 M, CDCl3) of 1-O-Hexadecyl-2-[3-(2-furyl)propanoyl]-sn-glycero-3-phosphatidylcholine 
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Figure S21. 1H-NMR (400 M, CDCl3+CD3OD) of 1-O-Hexadecyl-2-[4-(2-furyl)butanoyl]-sn-glycero-3-phosphatidylcholine (12b). 
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Figure S22. 13C-NMR (50 M, CDCl3) of 1-O-Hexadecyl-2-[4-(2-furyl)butanoyl]-sn-glycero-3-phosphatidylcholine (12b). 
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Figure S23. 1H-NMR (200 M, CDCl3+CD3OD) of 1-O-Hexadecyl-2-[8-(2-furyl)octanoyl]-sn-glycero-3-phosphatidylcholine 
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Figure S24. 13C-NMR (50 M, CDCl3+CD3OD) of 1-O-Hexadecyl-2-[8-(2-furyl)octanoyl]-sn-glycero-3-phosphatidylcholine 
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Figure S25. 1H-NMR (400 M, CDCl3) of KOHA-PAF (6a). 



S45 

 

H

O

O
O

O

O

O

PO O
O

N

6a

Figure S26. 13C-NMR (100 M, CDCl3) of KOHA-PAF (6a). 
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Figure S27. 1H-NMR (200 M, CDCl3) of KOOA-PAF (6b). 
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Figure S28. 13C-NMR (50 M, CDCl3) of KOOA-PAF (6b). 
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Figure S29. 1H-NMR (300 M, CDCl3+CD3OD) of KODA-PAF (6c). 
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Figure S30. 13C-NMR (50 M, CDCl3+CD3OD) of KODA-PAF (6c). 
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Figure S31. 1H-NMR (400 M, CDCl3+CD3OD) of KHdiA-PAF (7a). 
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Figure S32. 13C-NMR (50 M, CDCl3+CD3OD) of KHdiA-PAF (7a). 
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Figure S33. 1H-NMR (200 M, CDCl3+CD3OD) of KOdiA-PAF (7b). 



S53 

HO

O

O
O

O

O

O

PO O
O

N

7a

Figure S34. 13C-NMR (50 M, CDCl3+CD3OD) of KOdiA-PAF (7b). 
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Figure S35. 1H-NMR (400 M, CDCl3+CD3OD) of KDdiA-PAF (7c). 
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Figure S36. 13C-NMR (50 M, CDCl3+CD3OD) of KDdiA-PAF (7c). 
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Figure S37. 1H-NMR (400 M, CDCl3+CD3OD) of  
1-O-Hexadecyl-2-[6-(2, 2-dimethyl-1, 3-dioxolan-4-yl)-4-(tetrahydro-2H-pyran-2-yloxy)hex-5-enoyl]-sn-glycero-3-phosphatidylcholine (10a). 
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Figure S38. 13C-NMR (100 M, CDCl3+CD3OD) of  
1-O-Hexadecyl-2-[6-(2, 2-dimethyl-1, 3-dioxolan-4-yl)-4-(tetrahydro-2H-pyran-2-yloxy)hex-5-enoyl]-sn-glycero-3-phosphatidylcholine (10a). 
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Figure S39. 1H-NMR (400 M, CDCl3+CD3OD) of  
1-O-Hexadecyl-2-[7-(2, 2-dimethyl-1, 3-dioxolan-4-yl)-5-(tetrahydro-2H-pyran-2-yloxy)hept-6-enoyl]-sn-glycero-3-phosphatidylcholine (10b). 
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Figure S40. 13C-NMR (50 M, CDCl3) of  
1-O-Hexadecyl-2-[7-(2, 2-dimethyl-1, 3-dioxolan-4-yl)-5-(tetrahydro-2H-pyran-2-yloxy)hept-6-enoyl]-sn-glycero-3-phosphatidylcholine (10b). 
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Figure S41. 1H-NMR (400 M, CDCl3+CD3OD) of  
1-O-Hexadecyl-2-[11-(2, 2-dimethyl-1, 3-dioxolan-4-yl)-9-(tetrahydro-2H-pyran-2-yloxy)-undec-10-enoyl]-sn-glycero-3-phosphatidylcholine (10c). 
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Figure S42. 13C-NMR (100 M, CDCl3+CD3OD) of  
1-O-Hexadecyl-2-[11-(2, 2-dimethyl-1, 3-dioxolan-4-yl)-9-(tetrahydro-2H-pyran-2-yloxy)-undec-10-enoyl]-sn-glycero-3-phosphatidylcholine (10c). 
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Figure S43. 1H-NMR (400 M, CDCl3+CD3OD) of HOHA-PAF (4a). 
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Figure S44.13C-NMR (100 M, CDCl3+CD3OD) of HOHA-PAF (4a). 
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Figure S45. 1H-NMR (400 M, CDCl3+CD3OD) of HOOA-PAF (4b). 
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Figure S46. 13C-NMR (50 M, CDCl3+CD3OD) of HOOA-PAF (4b). 
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Figure S47. 1H-NMR (400 M, CDCl3+CD3OD) of HODA-PAF (4c). 
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Figure S48. 13C-NMR (100 M, CDCl3+CD3OD) of HODA-PAF (4c). 
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Figure S49. 1H-NMR (400 M, CDCl3+CD3OD) of HHdiA-PAF (5a). 
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Figure S50. 13C-NMR (50 M, CDCl3+CD3OD) of HHdiA-PAF (5a). 
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Figure S51. 1H-NMR (400 M, CDCl3+CD3OD) of HOdiA-PAF (5b). 
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Figure S52. 13C-NMR (100 M, CDCl3+CD3OD) of HOdiA-PAF (5b). 
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Figure S53. 1H-NMR (400 M, CDCl3+CD3OD) of HDdiA-PAF (5c). 
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Figure S54. 13C-NMR (100 M, CDCl3+CD3OD) of HDdiA-PAF (5c). 
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Figure S55. 1H-NMR (400 M, CDCl3+CD3OD) of C13-PAF. 
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Figure S56. 13C-NMR (100 M, CDCl3+CD3OD) of C13-PAF. 



S76 

O

O

O

O

PO O
O

N

LA-PAF

Figure S57. 1H-NMR (400 M, CDCl3+CD3OD) of LA-PAF. 
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Figure S58. 13C-NMR (100 M, CDCl3+CD3OD) of LA-PAF. 
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 Microphosphorus Assay. The amount of synthetic lipid was calibrated 

with a standard microphosphorus assay,30 which was modified to measure 

phospholipids at the level of 10 to 20 g of phospholipids. Lipid (15 – 25 g) 

was digested with 0.2 mL of perchloric acid (72 %) in a glass 5-mL 

disposable cell culture tube, which was heated to boiling in a sand bath. A 

yellow color appeared and then disappeared during the process. Water (2.1 

mL), 0.1 mL of aqueous ammonium molybdate (5 %) and 0.1 mL of aqueous 

amidol reagent containing 1 % amidol (2, 4-diaminophenol dihydrochloride) 

and sodium bisulfite (20 %) were sequentially added to the tube, which was 

vortexed after the addition. The tube was covered with a beaker, and heated 

in a boiling water bath for 7 min. Then the tube was cooled, and the 

absorbance of the stable blue color was measured whit a UV-vis 

spectrometer at 830 nm in a 1 cm cuvette after 15 min. A standard 

calibration curve was obtained using 0 g P, 0.5 g P, 1 g P, 2 g P, 4 g P 

obtained from a stock solution of KH2PO4 (40 g P/ml). 

 

Figure S59. Calibration curve for microphosphorus assay. 
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Percent Polyunsaturateda Lipids in Various Human Tissues 
 PCa PEa PSa PLa La 

plasma 30(1)   47(2) 44±3(1), 45(3) 
low-density lipoprotein 30(1)    50±1(1) 
high-density lipoprotein 37(1)    47±1(1) 

red blood cells 25(1),39(2) 49(2)  47(2),36(4) 32±4(1) 
platelets 32(1)    41±1(1) 

whole blood     36±5(1) 
leukocytes    33(5)  
fibroblasts 25(6) 56(6) 38(6) 20(5)b, 30(5)c, 

30(7),31(8) 
28(9),46(8) 

lymphocytes 22(10) 53(10)  39(10) 38(11),40(3) 
PBMC    50(12), 36(13)  

monocyte     37(11) 
brain—white matter 3(14),4(15), 

3(16) 
26(14),19(15), 

29(16) 
5(14),9(15)  14(15) 

brain—frontal gray 4(16) 44(16)    
brain—hippocampus 4(16) 42(16)    

brain—pons 1(16) 25(16)    
brain—temporal cortex    31(17)  

spinal cord 4(18) 25(18)    
peripheral nerve 5(18) 24(18)    

myelin 4(19) 28(19)    
axolemma 8(19) 37(19)    

retina    22(20)j  
retinal pigment epithelium    14(20)j,44(21)  

Bruch’s 
membrane/choroid   

 18(20)j  

lipofuscin    33(21)  
rod outer segments    49(21)  

neural retina    36(21)  
lens epithelium 28(22)     

heart 38(23) 50(23)    
lung 30(24)     

bronchial epithelium    19(25)  
alveolar epithelium    20(25)  
LSA (from BALF) 3(26)     

liver     26(27) 
liver microsomes 40(28) 51(28)    

spermatozoa    34±1(29)d,26±1(29)e  
placenta 36(30)f,37(30), 

40±1(31) 
51(30)f,49(30)g,

51±1(31) 
29(30)f,37(30)g,

29±1(31) 
39±1(31)  

skeletal muscle    53(32)h,53(33),51(34),
48(35)l,44(36)m 

 

vastus lateralis muscle    53(37)k  
prostasome 2(38) 13(38) 23(38)   

HUVEC 36(39) 61(39) 39(39) 10(40), 32(41), 43(39)  
intestinal mucosa    38(42)  

colonocyte epithelium    13(43)  
buccal cheek cell    24(44)i  

Abreviations: FA , fatty acids; PC, phosphotidylcholine; PE, phosphotidylethanolamine; PS, phosphotidylserine; PL, 
phopholipids; L, lipids; HUVEC, human umbilical vein epithelial cells; PBMC, peripheral blood mononuclear cells; FBS, fetal 
bovine serum; HS, human serum; LSA, large surfactant aggregates; BALF, bronchoalveolar lavage fluid, a expressed as % of total 
or select FA detected, as specified in corresponding reference, bcell cultures supplemented with FBS, ccell cultures supplemented 
with HS, dfrom 47% Percoll, efrom 90% Percoll, ffrom early placentae, gfrom term placentae,  han average from formula-fed, 
breast-fed, and non- or limited breast-fed infants, i an average of values for both 36- and 57-week infants, jan average of macula 
and periphery values, k an average of 8-, 14-, and 30-day untrained groups, l an average of 3 different age populations, mValues are 
an average of 4 different age populations . 
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