Supplementary Figure Legends

Figure S1. NMUP is intron dependent. (**A**) Schematic diagram indicating how the introndeleted construct was generated from construct A. The nonsense mutation (A^{N2} and ΔA^{N2}) and missense mutation (A^{M2} or ΔA^{M2}) were introduced into exon 6 at codon. (**B-D**) Quantification of RNase protection analysis performed on total cellular RNA (10 µg) harvested from HeLa cells transiently transfected with the constructs shown. Probes 1, and 3 (panel **A**) were used to detect mature/IVS-A+ pre-mRNA and IVS-B+ pre-mRNA, respectively. Values were quantified from 3 or more independent experiments by the approach described in Figure 1. Error bars indicate standard error. (**E**) Splicing rate as measured by pre-mRNA-to-mRNA ratio, determined as in Figure 5E, using the values in panels **B-D**.

Figure S2. The NMUP substrate contains TCR introns IVS-A and -B, but not IVS-C or -D. (**A**) Schematic diagram showing construct A and the position of the nonsense and frameshift mutations in variant constructs A^{N1} , A^{11+} , and A^{N2} (see also Figure 1A). The position of the intron probes used for the Northern blot analysis in panel B is also indicated. (**B**) Northern blot analysis of total cellular RNA (10 µg) isolated from HeLa cells stably transfected with constructs A, A^{N1} , A^{11+} , and A^{N2} . The schematics indicate the introns present in the pre-mRNAs in each band, based on band migration and their hybridization with the different probes. The bands corresponding to spliced IVS-A, -B, -C, and -D migrated at a position consistent with their expected sizes (~0.5, ~0.8, ~0.25, and ~0.1 nt, respectively). The transcripts denoted by the symbols Δ , §, and * are explained in Figure 3. The results shown are representative of two independent experiments.

Figure S3. TCR/TPI pre-mRNA has a long half-life. (A) mRNA half-life analysis of TCR/TPI pre-mRNA expressed from construct A (Figure 1B) transiently transfected into HeLa cells. The cells were cultured for 2 days after transfection and then incubated with the transcriptional inhibitor actinomycin D (8 µg/ml) for the times indicated. RNase protection analysis was performed on 10 µg total cellular RNA using probe 1 for IVS-A+ pre-mRNA, probe 3 for IVS-B+ pre-mRNA, and probe 4 for IVS-D+ pre-mRNA. Values were quantified as described in Figure 1; similar results were obtained in two independent transfection experiments. (B) mRNA halflife analysis of TCR/TPI pre-mRNA expressed from the *c-fos* promoter-driven construct shown (construct A^{tos}) transiently transfected into NIH-3T3 cells. The cells were cultured for 1 day after transfection in serum-free conditions and then incubated with serum (the times indicated are 45 minutes post-serum addition, as serum-induced *c-fos* transcription ceases ~45 minutes after the addition of serum). RNase protection analysis was performed on 5 μ g total cellular RNA using probe 1 for IVS-A+ pre-mRNA and probe 3 for IVS-B+ pre-mRNA. Values were quantified as described in Figure 1; similar results were obtained in two independent transfection experiments. (C) Real-time PCR analysis of endogenous β -actin and GAPDH pre-mRNA halflives determined using total cellular RNA from HeLa cells incubated with actinomycin D (8 ug/ml) for the times indicated. Real-time PCR analysis was performed as previously described (63).

Figure S4. NMUP is not relieved by suppressor tRNAs. (A) Schematic indicating the location of the nonsense mutations in constructs A^{N1} and A^{N2} . (**B-D**) RNase protection analysis of total cellular RNA obtained from HeLa cells transiently co-transfected with the constructs shown in panel A and the nonsense codon-specific suppressor tRNAs indicated. Probes 1 and 3 were used to determine the levels of pre-mRNA harboring IVS-A+ and IVS-B+, respectively. Mature mRNA levels were determined using probe 1. Quantification was done as described in Figure 7: a β -globin expression construct was cotransfected into the cells to provide an internal control

for transfection efficiency (β -globin mRNA levels were assayed by RNase protection analysis in the same gel that assayed TCR/TPI mRNA levels). Similar results were obtained in two independent experiments.

IVS-A⁺ pre-mRNA 500-400-300-200-100-A A^{N2} A^{M2} ΔA ΔA^{N2} ΔA^{M2}

Ε

IVS-A* pre-mRNA/mRNA ratio

А	A ^{M2}	ΔA	ΔA ^{M2}
1.0	0.9	1.0	0.8

Supplementary Figure S2

Probe A

Probe B

С

Supplementary Figure S4

100

0

400 300 200

UGA

A^{N2} (UGA) A^{N1} (UAA) Construct

Table S1. Constructs

Construct	Name	Mutation	Primer (5'-3')
Α	β -652	none	Gudikote <i>et al.</i> 2002 (8)
A ^{N1}	β-653	Codon 91, nonsense	Gudikote et al. 2002 (8)
▲ M1	0 1140	Codon 01 missonso	MDA 1924: CTGATCCATTACTCATACGTCGCTGACAGCACGGAG
A	p-1149	Codon 91, missense	MDA 1925: CTCCGTGCTGTCAGCGACGTATGAGTAATGGATCAG
A ^{I1+}	β -725	VDJ exon frameshift +10 at Codon 100	Gudikote et al. 2002 (8)
∆ ^{N2}	B- 726	Codon 194 exon 6 nonsense	MDA 2908: CACGAGAAGCTCTGAGGATGGCTG
	p-120		MDA 2909: CAGCCATCCTCAGAGCTTCTCGTG
A ^{M2}	ß-1076	Codon 194 exon 6 missense	MDA 1834: GAAGTACACGAGAAGCTCGGAGGATGGCTGAAGTCCAAC
	I		
A ^{N3}	β- 1075	Codon 112 VDJ nonsense	
A ^{™3}	β -1077	Codon 112 VDJ missense	MDA 1920: CAGAATGAGAGAGAGAAATTCTCTTCGCTTGGTCTGGAGGCC
a N4	0.4400		MDA 2449: GGTGCAGAAACGCTGTAATTTGGCTCAGGAACCAGACTG
A	β-1163	Codon 146 VDJ nonsense	MDA 2450: CAGTCTGGTTCCTGAGCCAAATTACAGCGTTTCTGCACC
▲ M4	0 1164	Codon 146 VDJ missense	MDA 2447: GGTGCAGAAACGCTGTACTTTGGCTCAGGAACCAGACTG
A	p-1104		MDA 2448: CAGTCTGGTTCCTGAGCCAAAGTACAGCGTTTCTGCACC
Δ ¹²⁺	ß-1154	Codon 114 VDJ Frameshift +1	MDA 1725: CTCCAGAATGAGAGAGAAATTTCTCTTGGCTTGGTCTGGAG
	p=11 0−		MDA 1726: CTCCAGAATGAGAGAGAAATTTCTCTTGGCTTGGCTTGG
A ¹³	β -1080	Codon 114 VDJ Frameshift +3	
	,		
A ^{D1+}	β -1155	Codon 146 VDJ Frameshift -1	
▲ I2D1			
A	β-1156	Codon 114,146 VDJ Framesnift +1/-1	
A ^{N5}	β -1161	Codon 164 E5 nonsense	
	_		
A ^{M5}	β -1162	-1162 Codon 164 E5 missense	MDA 2311: CAGGACGACCTCGCTCCAGTC
ΔΑ	β -1177	Codon 194 IVS 5.6 PTC-	
ΔΑ ^{N2}	ß-1178	Codon 194 ΔIVS 5.6 nonsense	MDA 476: GGTTGGATCCCTCACATGGGTGGTTCA
ΛΔ ^{M2}	ß-1179	Codon 194 AIVS 5.6 missense	MDA 480: GACAATCGATGCTTGGGGGCCTATGACT
- N6	β-1179 β-1184	Codon 191 E6 nonsense	MDA 2866 [.] GGAAGTACACTAGAAGCTCCGAG
A ^{N6}			MDA 2867: CTCGGAGCTTCTAGTGTACTTCC
▲ M6	β-1185	Codon 191 E6 missense 1	MDA 2868: GGAAGTACACMAGAAGCTCCGAG
A			MDA 2869: CTCGGAGCTTCTKGTGTACTTCC
A ^{M6'}	β -1186	Codon 191 E6 missense 2	Same as A ^{M6}
A ^{N7}	β -1187	Codon 192 E6 nonsene	MDA 2870: GAAGTACACGAGTAGCTCCGAGG

			MDA 2871: CCTCGGAGCTACTCGTGTACTTC
A ^{M7}	β-1188	Codon 192 E6 missense 1	MDA 2872: GAAGTACACGAGMAGCTCCGAGG MDA 2873: CCTCGGAGCTKCTCGTGTACTTC
Α ^{M7} '	β -1189	Codon 192 E6 missense 2	Same as A ^{M7}
A ^{N8}	β-1190	Codon 195 E6 nonsense	MDA 2874: GAAGCTCCGATGATGGCTGAAG MDA 2875: CTTCAGCCATCATCGGAGCTTC
A ^{M8}	β-1191	Codon 195 E6 missense 1	MDA 2876: GAAGCTCCGAMGATGGCTGAAG MDA 2877: CTTCAGCCATCKTCGGAGCTTC
A ^{M8'}	β -1192	Codon 195 E6 missense 2	Same as A ^{M8}
A ^{D2+}	β-1193	Codon 190 E6 frameshift -1	MDA 2878: CCCAGGAAGTAACGAGAAGCTC MDA 2879: GAGCTTCTCGTTACTTCCTGGG

Probe	Target	Primers (5'-3') or Source
1	IVS-A and VDJ exon	Probe <i>b</i> in Gudikote <i>et al.</i> 2005 (10)
2	Exon 1 and IVS-A	MDA 1446: GAAGCAGAGTCTGGGGGGAGC MDA 1447: CTCCTAACCCCGTCGCCT
3	IVS-B and exon 5	MDA 1448: GTACTTCGGTCCCGGCAC MDA 1449: GTACCAATGGCCACACAG
4	IVS-D and exon 7	MDA 2016: GGGCAGACTCATCCCATT MDA 2189: GTTTGGCATTGATGATGTCCAC

Table S2. RNase protection analysis probes

Table S3. Northern blot analysis probes

Probe	Target	Primers (5'-3') or Source
		Generated by restriction enzyme digestion as
A	IVS-A	detailed in the Materials & Methods
		Generated by restriction enzyme digestion as
В	IVS-B	detailed in the Materials & Methods
		MDA 1629: GTAACCGGGCCCAGGAG
C	IVS-C	MDA 1630: CTTCCTGGGCCTAGAACAAG
	11 (O D	MDA 1631: GTGAGTGGCTTTGGTTCCCG
D	IVS-D	MDA 1632: CTGGGAAGGGAGCAGAACAAG
E	VDJ exon	VDJ exon probe from Gudikote <i>et al.</i> 2002 (8)
L		