### Supplementary Data

A New Usage of Functionalized Oligodeoxynucleotide Probe

for Site-Specific Modification of a Guanine Base within RNA

Kazumitsu Onizuka, Yosuke Taniguchi, Shigeki Sasaki,\*

Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan, and CREST, Japan Science and Technology Agency.

sasaki@phar.kyushu-u.ac.jp

| 5'-d(CTTTXTTCTCCTTTCT)           |
|----------------------------------|
| 3'-r (GAAA <b>Y</b> AAGAGGAAAGA) |

### 5'-d ( CTTT $\mathbf{X}$ TTCTCCTTTCT ) 3'-d ( GAAA $\mathbf{Y}$ AAGAGGAAAGA )

## **CD** spectra



*Figure S1.* CD spectra and UV melting curves. CD spectra were measured using 2.5  $\mu$ M duplexes in 50 mM MES buffer (pH 7, broken line) or 50 mM carbonate buffer (pH 9.8, solid line) containing 100 mM NaCI. Melting curves were measured using 1.3  $\mu$ M duplexs in 50 mM MES buffer (pH 7) or 50 mM carbonate buffer (pH 9.8) containing 100 mM NaCI.

## pH dependency (DNA)



**Figure S2.** The pH dependency of the transfer reaction with DNA substrate. The transfer reactions were performed by using 1.5  $\mu$ M of S-functionalized ODN**1F** (G<sup>S</sup>(Me, Ph)) and 1.0  $\mu$ M of the target ODN**6** (G) in 50 mM phosphate or carbonate buffer (pH > 9) at 25°C for 1h, and followed by HPLC (Column: SHISEIDO C18, 4.6 x 250 mm; Solvent: A: 0.1 M TEAA Buffer, B: CH<sub>3</sub>CN, B: 10% to 30% /20 min, linear gradient; Flow rate: 1.0 ml/min; monitored by fluorescence detector at 518 nm with emission at 494 nm).



*Figure S3.* Selectivity to the guanine base in the DNA substrates. The transfer reactions were performed by using 1.5  $\mu$ M of *S*-functionalized ODN1F(G<sup>S</sup>(Me, Ph)) and 1.0  $\mu$ M of the target ODN6 (Y) in 50 mM carbonate buffer containing 100 mM NaCl at pH 10 for 2h, and followed by HPLC (Column: SHISEIDO C18, 4.6 x 250 mm; Solvent: A: 0.1 M TEAA Buffer, B: CH<sub>3</sub>CN, B: 10% to 30% /20 min, linear gradient; Flow rate: 1.0 ml/min; monitored by fluorescence detector at 518 nm with emission at 494 nm).



# Hydrolysate of the modified DNA



Figure S4. <sup>1</sup>H-NMR measurements



| ODN                                   | Complementary strand  | Y = pH                |     | Tm (°C) |
|---------------------------------------|-----------------------|-----------------------|-----|---------|
| ODN1-G <sup>S</sup>                   | ORN <b>5</b>          | rG 9.8                |     | 39      |
| ODN <b>1F</b> -G <sup>S</sup> (H, Ph) | ORN <b>5</b>          | rG 9.8                |     | 42      |
| ODN <b>1F</b> -G <sup>S</sup> (H, Ph) | ORN <b>5</b> (FAM)    | rG                    | 9.8 | 43      |
| ODN <b>1F</b> -G <sup>S</sup> (H, Ph) | ORN <b>5</b> (FAM)    | rC                    | 9.8 | 42      |
| ODN <b>1F</b> -G <sup>S</sup> (H, Ph) | ORN <b>5</b> (FAM)    | rA                    | 9.8 | 44      |
| ODN <b>1F</b> -G <sup>S</sup> (H, Ph) | ORN <b>5</b> (FAM)    | rU                    | 9.8 | 43      |
| ODN <b>1F</b> -G <sup>S</sup> (H, Ph) | ORN <b>5</b> rG       |                       | 7   | 47      |
| ODN <b>1</b> -G <sup>S</sup> (H, Ph)  | ORN <b>5</b> (FAM)    | ORN <b>5</b> (FAM) rG |     | 49      |
| ODN <b>1F</b> -G <sup>S</sup> (H, Ph) | ORN <b>5</b> (FAM) rC |                       | 7   | 49      |
| ODN <b>1F</b> -G <sup>S</sup> (H, Ph) | ORN <b>5</b> (FAM)    | rA                    | 7   | 49      |
| ODN <b>1F</b> -G <sup>S</sup> (H, Ph) | ORN <b>5</b> (FAM) rU |                       | 7   | 48      |
| ODN <b>1F</b> -G <sup>S</sup> (H, Ph) | ODN <b>6</b> (FAM)    | dG                    | 9.8 | 35      |
| ODN <b>1F</b> -G <sup>S</sup> (H, Ph) | ODN6 (FAM)            | dC                    | 9.8 | 37      |
| ODN <b>1F</b> -G <sup>S</sup> (H, Ph) | ODN <b>6</b> (FAM)    | dA                    | 9.8 | 35      |
| ODN <b>1F</b> -G <sup>S</sup> (H, Ph) | ODN <b>6</b> (FAM)    | dT                    | 9.8 | 35      |
| ODN <b>1F</b> -G <sup>S</sup> (H, Ph) | ODN6                  | dG                    | 9.8 | 34      |
| ODN <b>1F</b> -G <sup>S</sup> (H, Ph) | ODN6                  | dHx                   | 9.8 | 33      |
| ODN <b>1F</b> -G <sup>S</sup> (H, Ph) | ODN6                  | d2AP                  | 9.8 | 34      |
| ODN <b>1F</b> -G <sup>S</sup> (H, Ph) | ODN6                  | dG                    | 7   | 39      |
| ODN <b>1F</b> -G <sup>S</sup> (H, Ph) | ODN6                  | dHx                   | 7   | 38      |
| ODN <b>1F</b> -G <sup>S</sup> (H, Ph) | ODN6                  | d2AP                  | 7   | 39      |
| ODN <b>2F</b> -G <sup>S</sup> (H, Ph) | ORN7 (FAM)            |                       | 9.8 | 45      |
| ODN <b>2F</b> -G <sup>S</sup> (H, Ph) | ORN <b>8</b> (FAM)    |                       | 9.8 | 45      |
| ODN <b>3F</b> -G <sup>S</sup> (H, Ph) | ORN7 (FAM)            |                       | 9.8 | 42      |
| ODN <b>3F</b> -G <sup>S</sup> (H, Ph) | ORN <b>9</b> (FAM)    |                       | 9.8 | 45      |
| ODN <b>4F</b> -G <sup>S</sup> (H, Ph) | ORN <b>10</b> (FAM)   | rG                    | 9.8 | 36      |
| ODN <b>4F</b> -G <sup>S</sup> (H, Ph) | ORN <b>10</b> (FAM)   | rC                    | 9.8 | 37      |
| ODN <b>4F</b> -G <sup>S</sup> (H, Ph) | ORN10(FAM)            | rA                    | 9.8 | 36      |
| ODN <b>4F</b> -G <sup>S</sup> (H, Ph) | ORN10 (FAM)           | rU                    | 9.8 | 36      |

Table S1. UV Melting temperatures of the duplexes formed with.

| DNA or RNA     | 5' Label | X or Y                          | Calcd ([M-H] <sup>-</sup> ) | Found  |
|----------------|----------|---------------------------------|-----------------------------|--------|
| ODN1           |          | X = G <sup>S</sup>              | 4767.8                      | 4766.5 |
| ODN1F          |          | X = G <sup>S</sup> (Me, Ph)     | 4939.7                      | 4941.5 |
| ODN1F          |          | X = G <sup>S</sup> (Me, Pyrene) | 5063.9                      | 5064.4 |
| ODN1 F         |          | X = G <sup>S</sup> (H, Ph)      | 4897.8                      | 4898.8 |
| ODN2           |          | X = G <sup>S</sup>              | 4742.7                      | 4742.8 |
| ODN2 F         |          | X = G <sup>S</sup> (Me, Ph)     | 4914.7                      | 4914.2 |
| ODN <b>2 F</b> |          | X = G <sup>S</sup> (Me, Pyrene) | 5038.8                      | 5037.8 |
| ODN2F          |          | X = G <sup>s</sup> (H, Ph)      | 4872.7                      | 4872.9 |
| ODN <b>3</b>   |          | X = G <sup>S</sup>              | 4742.7                      | 4742.4 |
| ODN <b>3F</b>  |          | X = G <sup>S</sup> (Me, Ph)     | 4914.7                      | 4914.0 |
| ODN <b>3F</b>  |          | X = G <sup>S</sup> (Me, Pyrene) | 5038.8                      | 5038.4 |
| ODN <b>3F</b>  |          | X = G <sup>S</sup> (H, Ph)      | 4872.7                      | 4872.7 |
| ODN4           |          | X = G <sup>S</sup>              | 6719.1                      | 6719.1 |
| ODN4 F         |          | X = G <sup>S</sup> (Me, Ph)     | 6891.1                      | 6890.5 |
| ODN <b>4</b> F |          | X = G <sup>s</sup> (H, Ph)      | 6849.1                      | 6849.0 |
| ORN <b>5</b>   |          | Y = rG                          | 5297.8                      | 5297.8 |
| ORN <b>5</b>   | FAM      | Y = rG                          | 5835.9                      | 5835.9 |
| ORN <b>5</b>   | FAM      | Y = rC                          | 5795.9                      | 5795.1 |
| ORN <b>5</b>   | FAM      | Y = rA                          | 5819.9                      | 5819.5 |
| ORN <b>5</b>   | FAM      | Y = rU                          | 5796.9                      | 5796.5 |
| ORN <b>5</b>   |          | Y = rG(Me, Ph)                  | 5469.8                      | 5469.6 |
| ORN <b>5</b>   |          | Y = rG(Me, Pyrene)              | 5593.9                      | 5593.8 |
| ODN6           | FAM      | Y = dG                          | 5579.1                      | 5579.5 |
| ODN <b>6</b>   | FAM      | Y = dC                          | 5539.1                      | 5538.7 |
| ODN6           | FAM      | Y = dA                          | 5563.1                      | 5563.5 |
| ODN6           | FAM      | Y = dT                          | 5554.1                      | 5553.7 |
| ODN6           |          | Y = dG                          | 5041.9                      | 5091.6 |
| ODN6           |          | Y = dHx                         | 5026.9                      | 5026.7 |
| ODN <b>6</b>   |          | Y = d2AP                        | 5026.0                      | 5025.4 |
| ODN <b>6</b>   |          | Y = dG(Me, Ph)                  | 5214.0                      | 5213.6 |
| ODN6           |          | Y = d2AP(Me, Ph)                | 5198.0                      | 5198.3 |
| ORN <b>7</b>   | FAM      |                                 | 5851.9                      | 5851.3 |
| ORN <b>8</b>   | FAM      |                                 | 5811.9                      | 5811.3 |
| ORN <b>9</b>   | FAM      |                                 | 5811.9                      | 5811.2 |
| ORN <b>10</b>  | FAM      | Y = rG                          | 9145.1                      | 9145.4 |
| ORN <b>10</b>  | FAM      | Y = rC                          | 9105.1                      | 9105.9 |
| ORN10          | FAM      | Y = rA                          | 9129.1                      | 9129.0 |
| ORN10          | FAM      | Y = rU                          | 9106.1                      | 9106.3 |

Table S2. MALDI-TOF.MS Data of all ODN and ORN compounds used in this study.