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A. Details of the filtering of the Pfam-A alignments are as follows:
1. Alignments contained only eukaryotic sequences with evidence

at the “protein” or “transcript” level from UniProtKB/
Swiss-Prot (1) (release 54.6).

2. To retrieve the most informative area of the alignment, se-
quences and positions were restricted to less than 30% gaps.
This selection was done recursively as follows:
for (i ¼ 70; i ≥ 30; i ¼ i − 10) {keep sequences with (% of gaps
≤i) based on positions with (% of gaps ≤i)}
For each “i,” the original sequences were recovered.
Note that sequences were not trimmed in any way so that their
ungapped version at this point remained true to the original
Pfam sequence.

3. Redundancy at 95% sequence identity was removed, calcu-
lated by means of Cd-hit (2). For each redundant cluster, a
representative sequence was selected maximizing the follow-
ing scoring:

• Sequences with PDB: þ4.
• Sequences with EC number: þ2.
• Sequences from HUMAN: þ1.

In case of a tie within a redundant cluster, the largest sequence
was selected.

4. Outliers were removed and they were defined as sequences
with less than 40% identity against any other within the
alignment.

5. Gappy positions (>10% gaps) were removed.
6. Alignments with less than 12 sequences or less than 25 posi-

tions were ignored. No upper limits were imposed regarding
the number of sequences or positions.

B. Details of the protocol followed to define both the subfamilies and
the specificity determining positions within a multiple sequence align-
ment. In this section, we provide the full mathematical details of
the protocol followed to define both protein subfamilies and spe-
cificity determining positions (SDPs). In order to make such a
description more clear to a nonexpert reader, we start with an
intuitive explanation referring to the corresponding technical
subsections.

In this work, the analysis of the multiple sequence alignments
(MSAs)was carried out under the framework provided bymultiple
correspondence analysis (MCA). This methodology is based on
correspondence analysis (3), a multivariate descriptive statistical
technique that can be viewed as equivalent to a principal compo-
nent analysis (PCA) when dealing with qualitative/binary data,
such that proper quantitative values can be assigned to them (3,
4). MCA provides a meaningful vectorial representation of both
proteins and residues on a space defined by the independent
sources of variation within the MSA. This approach allows
uncovering groups of proteins linked to groups of residues that will
be later considered as protein subfamilies and SDPs, respectively.

First, the MSA is coded as a binary matrix (Binary coding of a
multiple sequence alignment), which denotes an initial vectorial
representation of both sequences and residues. The MCA per-
forms a transformation of the coordinate system where the initial
vectors are represented, into the so-called principal axes (Defini-
tion of the principal axes and their associated explained variance).
The main property of these new “principal axes” is that they are
uncorrelated, and, as a consequence, they can be interpreted as

independent sources of variation within the initial MSA. Next,
sequences and residues coordinates in the principal axes are
obtained (Projection of the sequences within the MSA onto the
principal axes and Projection of the residues within the MSA onto
the principal axes, respectively). In this new vectorial representa-
tion of sequences and residues, distances between any pair of
sequences and between any pair of positions account for Chi-
squared distances. Chi-squared distances are suitable for binary/
qualitative data such as the previously described coding for both
sequences and residues (Binary coding of a multiple sequence align-
ment). Importantly, in these new coordinate systems, sequences
and positions can be compared through the so-called “MCApseu-
dovaricentric relationships.”According to these relationships, the
center ofmasses of any groupof sequences points to those residues
particularly associated to them (Pseudovaricentric relationships
between the projected sequences and the projected residues).

Additionally, the MCA framework allows one to obtain a
favorable balance between relevant and noisy information within
the initial MSA. This balance is achieved by the analysis of the
amount of information provided by each new principal axis. In
order to evaluate which axes can be considered relevant, the
incremental information they convey is statistically assessed
(Selection of the number of informative principal axes).

The k-means algorithm is used to obtain an automatic cluster-
ing of sequences in the selected dimensions. Clustering solutions
are gathered for a prespecified number of groups ranging from
two to one-fourth of the number of proteins (with a maximum of
50). Then, the clustering solution maximizing the ratio of the
intercluster distances over the intracluster distances is selected.
This procedure automatically identifies the putative groups of
proteins, which are regarded as different subfamilies within
the MSA (Clustering of the projected sequences in the selected axes
to define protein subfamilies).

Finally, the centers of masses of these groups of proteins are
then used to detect those residues particularly associated to them
(Assignment of residues to protein subfamilies). SDPs are identified
as those that better fit such a grouping (SDPs definition).

B.1. Binary coding of a multiple sequence alignment.
Given a MSA of N sequences and L positions, a data matrix
WN×Q of dimensions N ×Q (where Q ¼ 21L) is built, represent-
ing each position “l” in the alignment as a complete disjunctive
category with 21 different modalities (representing the 20 amino
acid types plus the gap), encoding the presence of a modality with
“1” and its absence with “0.”

Columns in W without a “1” are removed for subsequent con-
sistency without a loss of generality, resulting in a matrix XN×P of
dimensions N × P, where P < Q.

B.2. Definition of the principal axes and their associated explained
variance.
The data matrix X defined above, with the general term xnp,
allowed us to define the following frequencies:

xnS ¼∑
P

p¼1

xnp; xSp ¼∑
N

n¼1

xnp; xSS ¼∑
N

n¼1
∑
P

p¼1

xnp;

f nS ¼ xnS∕xSS; f Sp ¼ xSp∕xSS; f np ¼ xnp∕xSS:

Let YN×P be the matrix with the general term ynp ¼
f np∕ðf Sp

ffiffiffiffiffiffi
f nS

p Þ. Let ZN×P be the matrix with the general term
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znp ¼ f np∕
ffiffiffiffiffiffiffiffiffiffiffiffi
f Spf nS

p
and ZT

P×N its transpose. Let VN×P represent
the matrix displaying by columns the eigenvectors of ZZT .

The space generated by the eigenvectors of ZZT provides an
orthogonal decomposition of the sequences versus the residue-
positions association between its sources of variation. For the
sake of consistency and the improvement of the measure of
fit, adjustments of eigenvalues are made a posteriori (5): Let
λi be the ith nonnull eigenvalue of matrix ZZT . The trivial solu-
tion λ ¼ 1 and the eigenvalues fulfilling λi < ð1∕L2Þ, as well as its
associated eigenvectors, are disregarded in the analysis. There-
fore, VN×K becomes VN×J , where J is the number of remaining
eigenvalues. The eigenvalues are adjusted as follows:

λadjj ¼
�

L
L− 1

�
2
�
λj −

1

L

�
2

:

Then, the percentage of total variance explained by each asso-
ciated eigenvector can be calculated as

λadjj

∑
J

j¼1
λadjj

· 100.

B.3. Projection of the sequences within the MSA onto the principal
axes.
Let RN×N be the diagonal matrix of dimensions N × N with the
general term rnn ¼ 1ffiffiffiffiffi

f nS
p . Let TP×P be the diagonal matrix of di-

mensions P × P with the general term tpp ¼ 1ffiffiffiffiffi
f Sp

p . Let DJ×J be

the diagonal matrix of dimensions J × J with the general term
djj ¼

ffiffiffiffi
λj

p
and D0

J×J its inverse. Let Dadj
J×J be the diagonal matrix

of dimensions J × J with the general term dadjjj ¼
ffiffiffiffiffiffiffi
λadjj

q
.

The projection of theN sequences onto the space generated by
the VN×J eigenvectors of ZZT can be calculated as

Θppal
N×J ¼

ffiffiffiffi
N

p
ðVN×JD

adj
J×JÞ;

where the general term θppalnj of Θppal
N×J accounts for the “principal

coordinates” of the sequence “n” in the principal axis “j.” Their
so-called “standard coordinates” θstdrnj are calculated as

Θstdr
N×J ¼

ffiffiffiffi
N

p
ðVN×JD0

J×JD
adj
J×JÞ:

B.4. Projection of the residues within the MSA onto the principal axes.
In an analogous way, the projection of the P residue positions
onto the space generated by the VN×J eigenvectors of ZZT can
be calculated as

Ψppal
P×J ¼ TP×PðZ0

P×NVN×JÞD0
J×JD

adj
J×J ;

where the general term ψppal
pj of Ψppal

P×J accounts for the principal
coordinate of the residue position “p” in the principal axis j.

B.5. Pseudovaricentric relationships between the projected sequences
and the projected residues.
LetCbeanumberof additional features forwhich theN sequences
within the MSA can be evaluated in binary terms. That is, we can
build a binarymatrixΦN×C with general termφnc, whereφnc ¼ 1, if
sequence n has a feature c or otherwise φnc ¼ 0. That is,

φncf
φnc ¼ 1⇔n ∈ c;nf1;…;Ng; cf1;…;Cg;∀ c∃n∕φnc ¼ 1g

φnc ¼ 0⇔n ∉ c
g:

Let HC×C be the diagonal matrix of dimensions C × C with the
general term hcc ¼ 1∕∑N

n¼1 φnc.
Because of the so-called “pseudovaricentric relationships” in

the MCA, it can be demonstrated that projecting a feature c,
coded as a column in ΦN×C, as a supplementary point in principal
coordinates onto the space generated by the J eigenvectors of
ZZT displayed in VN×J , and together with the P residue positions,
is equivalent to assessing the center of masses of the n sequences
having the feature c from the standard coordinates θstdrnj of such
sequences. The principal coordinates ωppal

cj of the feature c onto
the principal axes j are calculated as

ΩC×J ¼ ððRN×NΦN×CHC×CÞTVN×JÞD0
J×JD

adj
J×J :

We can summarize these concepts by the MCA providing the
orthogonal decomposition of the sources of variation within
the initial MSA. These sources are represented by each of the
principal axes (eigenvectors) coded by VN×J , and they can be
prioritized by ranking their associated eigenvalues in descending
order. Sequences and residue positions are represented in this
space through their principal coordinates Φppal

N×J and Ψppal
P×J ,

respectively. As a main property, the eigenvalue associated to
each principal axes is equal to the variance of the principal
coordinates in that axis, for both sequences and residue positions.
In this space, the Euclidean distance between any pair of se-
quences, based on the principal coordinates, and between any
pair of residue positions accounts for their Chi-squared distances.
Chi-squared distances are suitable to compare individual ele-
ments described by means of qualitative variables. Furthermore,
sequences versus positions can be compared in this space through
the so-called pseudovaricentric relationships, whereby the center
of masses of the standard coordinates of any set of sequences is
equivalent to the principal coordinates of a residue position per-
fectly matching the pattern of those sequences’ presence/absence.
Hence, a set of sequences can be translated into the principal co-
ordinates of the residue positions, which is directly comparable in
terms of Euclidean distances (in turn accounting for the chi-
squared distances).

B.6. Selection of the number of informative principal axes.
Once the total variability within the initial MSA has been decom-
posed into orthogonal sources of variation and ranked in decreas-
ing order of importance, the next step is to evaluate how many of
them can be considered relevant. This step is achieved on the
basis of a nonparametric Wilcoxon rank sum test (6). The goal
is to assess the statistical confidence of the increase of informa-
tion when considering one more dimension. The first I axes to be
considered are calculated as

I ¼

8>>><
>>>:

max i ∈ ½2; J�∕ProbWilcoxon

�h
∑

i−1
j¼1

�
θppaln×j

�
2
;

∀ n≤N�<
h
∑

i

j¼1

�
θppaln×j

�
2
;∀ n≤N

i�
< 0:01

1

9>>>=
>>>;
:

For practical reasons, in this work we limited “I” to be less than or
equal to “10”. The rationale for comparing both previous distri-
butions is based on the relationship between the variability ex-
plained in a space defined by I axes and the sum of its
associated eigenvalues, where

∑
I

j¼1

λadjj ¼∑
N

n¼1
∑
I

j¼1

ðθppaln×j Þ2:

This means of selecting the optimal number of dimensions can be
viewed as a way to strike the most favorable balance between the
relevant and the noisy information.
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B.7. Clustering of the projected sequences in the selected axes to
define protein subfamilies.
To obtain an automatic clustering of sequences in the selected
dimensions, we used the k-means algorithm implemented in ref. 7.
We performed the clustering of the coordinates coded in Θppal

N×J ,
which was run for a prespecified number “g” of groups using the
following parameters: dist ¼ e; method ¼ a; npass ¼ max
(N × 10; 500). We considered a solution for a given number
“g” of groups only if the clustering solution was found at least
5% of the times that the algorithm was run (ifound ≥
npass � 0.05). The optimal solution was that which maximized
the CHindex (8). The CHindex measures the ratio of the average
intercluster simple deviations over the average intracluster simple
deviations. The optimal clustering and the corresponding number
G of groups are selected as follows:

G¼ g ∈
�
2;min

�
N
4
;50

��
∕max

g
CHindex ¼

¼ ∑
g

i¼1
dðMi;MtotalÞ∕ðg− 1Þ

∑
g

i¼1∑
ni
j¼1

dðMi; s
j
iÞ∕ðN − 1Þ

;

where g is the number of clusters, N is the total number of se-
quences, ni is the number of sequences in the cluster i, Mi is
the center of masses of the cluster i,Mtotal is the center of masses
of all the sequences (which upon MCA will be the origin of the
coordinates “0”), sji is the sequence j of the cluster i, and dð ; Þ
accounts for the Euclidean distance of the coordinates coded
in Θppal

N×J . When N∕4 is not an exact division, it is rounded to
the higher integer. The optimal G clusters of sequences were
taken as the subfamily composition within the MSA.

B.8. Assignment of residues to protein subfamilies.
Each subfamily within the MSA can be regarded as a feature for
which the N sequences within the MSA are evaluated in binary
terms, that is, “1” if sequence n belongs to that subfamily or “0”
otherwise. This coding leads to the general binary matrix ΦN×C
previously defined, where the C additional features are built from
each of the ways that a number of γ groups can be taken together
from among the G number of optimal clusters, regardless of
order, that is, ðGγ Þ from γ ¼ 1 to γ ¼ G. Therefore, the total num-
ber of additional features C will be

C¼ ∑
γ¼G

γ¼1

�
G
γ

�
¼ ∑

γ¼G

γ¼1

G!

ðG− γÞ!γ! :

As explained before, once ΦN×C has been defined, the principal
coordinates of each feature c on the principal axis j are given by
ΩC×J , and these coordinates can be directly compared through
Euclidean distances against the principal coordinates Ψppal

P×J of
the residue positions in the same axis. To partition the P residue
positions according to the C groupings of sequences coded in
ΦN×C, we assigned each residue position p to the nearest grouping
c, that is,

p ∈ c⇔min
c

dðωp;ψ
ppal
c Þ:

B.9. SDPs definition.
The set of residue positions p associated to c were then ranked in
increasing order of distance, which provides a ranking of the fit-
ness of the positions to the assigned feature. Residue positions p
accounting for gaps at this point were disregarded from the

analysis, and they were not considered in the rankings. For each
grouping c, we considered a subset c0 of the best ranked positions
p0 defined by a threshold β ∈ ½0; 1� as a fraction of the total set, as
follows:

c0 ⊂ c∕∀ c00 ⊂ c0∕jc00j ¼ β · jcj : max rankð∀ p00 ∈ c00Þ ¼
¼max rankð∀ p0 ∈ c0Þ<min rankð∀ p ∈ c0Þ:

When β · jcj was not an exact division, it was rounded to the
higher integer.

Let Δppal
L×C be a binary matrix with general term δlc as follows:

δlc

�
δlc ¼ rankðpÞ ⇔ p ∈ c0 ⊂ c∧p ∈ l

δjc ¼ 0

	
:

We defined SDPs as those “l” whose residues have an average
rank equal to or less than α upon a complete disjunctive partition
of the N sequences within the MSA, that is,

l ∈ SDPs⇔

8<
:

∀ k ∈C∕δlk > 0 : k ∈ K ∧∑
k

φk ¼ ~1∧
∑
k

δlk

jKj ≤ α

∀ i; j ∈C∕δli > 0∧δlj > 0∧ i ≠ j : φi · φj ¼ 0

9=
;:

In this work, we established α ¼ 10 and disregarded any
c ∈ C∕jφcj ≤ 3 with reference to both its associated residue posi-
tions c0 and the definition of a complete disjunctive partition.

C. Additional details concerning the analysis of the functional organi-
zation of protein subfamilies.
C.1. EC set.
We defined classes of proteins within a MSA as those sharing the
first two digits of the EC code (e.g., EC 2.11./EC 2.10./EC 1.4. are
all different classes), while “groups” were defined as the sets with-
in classes sharing the four EC digits (EC 2.11.7.5/EC 2.11.7.8/EC
2.11.3.1 are all different groups within the same class). Pfam
families with partially overlapping EC classes or partially over-
lapping EC groups within a class were disregarded. Only one
reference EC class was chosen for a Pfam case: the one with
the largest number of sequences and then that with the most
groups. For the analysis we considered those families fulfilling
the following requirements: (i) more than one “group with at
least three sequences”; (ii) at least 25% of the sequences should
be included in an EC group; and (iii) no group contains more than
80% of the sequences with a EC group assigned.

C.2. Interaction set.
Pairs of interacting yeast and human proteins were taken from the
Database of Interacting Proteins core datasets of “small scale”
experiments (9). We extracted “manually drawn” pathways for
yeast and humans from the Kyoto Encyclopedia of Genes and
Genomes (10) pathway database. BioGRID (release 2.0.49)
(11) was used as a general repository for interaction datasets
in yeast and humans that considers high-throughput experiments.
Experimentally determined subcellular localization was extracted
from the MIPS database (12) (on 14-11-2005) for yeast, and from
the eukaryotic subcellular localization database (eSLDB) for
yeast and humans (13) (on 21-1-2009). The subcellular locations
considered and their mapping between fields for both databases,
were as shown in Table S1.

D. Structural definition of ligand binding sites and protein-protein
binding sites.All the sequences within a MSA for which structural
information was available were aligned against their PDB
crystal structures [as detected by the Macromolecular Structure
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Database (14)]. We only considered PDBs stemming from x-ray
diffraction experiments with a resolution below 3 Å and fewer
than 10 missing atoms. Blast2Seq (15) was used to obtain the cor-
responding pairwise alignments.

From these structures, those with a structural domain assigned
by the Structural Classification of Proteins (SCOP) (16), with at
least an 80% alignment overlap with the corresponding defined
Pfam domain, were selected.

Functional residues from these structures were gathered as
follows:

• Ligand binding residues were retrieved from FireDB (17).
• Protein-protein binding sites were defined following the ap-

proach of Valdar and Thornton (18), implemented in http://
www.biochem.ucl.ac.uk/bsm/valdarprograms/pdb_defineface
.html. To this end, we used the biological units provided by
the Resource for Studying Biological Macromolecules PDB
(19) (on 03-12-2008; ftp://ftp.rcsb.org/pub/pdb/data/biounit/
coordinates) to eliminate the crystallographic interfaces.
BioUnitPDBfileswere filtered through theprogramimplemen-
ted at http://www.biochem.ucl.ac.uk/bsm/valdarprograms/pdb_
fixcoord.html, before using pdb_defineface under the following
parameters: –rm_noalpha –het_nonaminos –unhet_aminos.
Homomeric and heteromeric interaction interfaces were
assessed in a pairwise manner; for instance: Given a BioUnit
PDB file containing three chains A, B, and C, the interaction
interface of A was assessed as the sum of the interaction
interfaces of A with B and A with C. Only Pfam residues within
SCOP limits were considered to define interaction interfaces,
unless the length of the PDB chain outside of those limits was
shorter than 15 residues.

The functional residues gathered (binding site and interaction
interface) were then mapped onto one of these structures, which
was selected as the optimal representative of the whole family.
This selection was performed through the infrastructure imple-
mented in FireDB. In FireDB, all PDB chains are clustered at
97% of sequence identity, each group being represented by a
so-called “master sequence.” A master sequence was first se-
lected as the family representative because it maximizes the fol-
lowing parameters:

1. The total sum of “% SDPs” plus “% of binding site residues
along the PDBs and within the alignment” it covers;

2. alignment coverage (disregarding gappy columns at 10%
level);

3. % sequence identity with the corresponding Pfam sequence.

Then, a PDB chain from the “representative master sequence”
was selected as the “representative PDB chain” for the family,
which maximized the following parameters:

1. The total sum of “% SDPs” plus “% of binding site residues
along the PDBs and within the alignment” it covers;

2. x-ray diffraction resolution.

E. Analysis of protein subfamilies and SDPs identified by several
methods. In this section, we aim to further support the generality
of the conclusions drawn in this work. To do so, we reproduce the
key analyses of our study using four state-of-the-art methods with
an accessible stand-alone software: evolutionary trace (ET) (20),
combinatorial entropy optimization (CEO) (21), mutational
behavior (MB) (22), and PCA (23). In PCA, the MSA decompo-
sition reported by Casari et al. is followed by the same protocol

described above (sections B.6–B.9) in order to automatize the
detection of protein subfamilies and SDPs.

The previous methods are all sequence-based (they use a MSA
as an input and do not require structural information) and un-
supervised (they do not require an external functional classifica-
tion). Table S4 summarizes their main characteristics. Such meth-
ods are representative of the major approaches in the field. We
applied all these methods to the same collection of Pfam align-
ments described in Methods (Dataset of protein families).

Fig. S2 shows the correspondence between subfamilies, EC
groups, and specific interactors. Results for PCA and CEO meth-
ods are represented in the receiver operating characteristic
(ROC) space (see Analysis of the functional organization of protein
subfamilies in Methods). The comparison of these plots to those
corresponding to MCA (Fig. 1) supports the global tendency of
protein subfamilies to agree with both EC and interaction-based
classifications. Notwithstanding, minor differences among the
performances of the methods can be observed: CEO tends to
be more specific than MCA and PCA at the expense of being less
sensitive. Interestingly, considered as a whole, MCA performs
qualitatively better according to both functional classifications.

Additionally, a functional enrichment analysis for the SDPs
produced by the different methods was performed, in the same
way as described in Methods (Enrichment tests). The stand-alone
programs of ETand CEO did not provide a threshold to define a
set of SDPs but a ranking of all the positions within the MSA. In
order to make them comparable, we selected their first n ranked
positions for each family, where n is the respective average num-
ber of SDPs predicted by the MCA, PCA, and MB methods. This
criterion is intended to retrieve a comparable number of predic-
tions for the methods, although it might not be the optimal selec-
tion for any of the individual methods.

Table S3 shows the functional enrichment p values obtained for
the positions produced by the different methods. The general
association between SDPs and both ligand-binding sites and
interfaces is reproduced by all the methods. The procedure used
to retrieve a comparable number of SDPs (see above) might be
causing the poor performance of CEO in this analysis. Further
study of CEO performance is, however, beyond the scope of this
work.

ET results are highly enriched in all types of functional resi-
dues, to a level similar to that of conserved positions. These
results are coherent with the more comprehensive definition
of “evolutionary relevant positions” considered by ET. Indeed,
76% of the positions within the ET set were conserved positions,
in contrast to the less than 1% for the other methods. This over-
lap led us to generate a new set of ET predictions (referred as ET-
ConsFree in Table S3) by filtering out conserved positions from
its rankings. In this case, results become gradually more similar to
those of the other methods.

Taken together, the figures shown by PCA, MB, and ET-
ConsFree support the general association between SDPs and
both ligand-binding sites and interfaces. Furthermore, the ob-
served general trends point to a consistent association of SDPs
to heteromeric interfaces, whereas for the homomeric and intra-
protein interfaces this association remains inconclusive.

Importantly for this study, the results obtained with our ap-
proach are qualitatively similar to those produced by the other
methods. Moreover, the capacity of MCA to produce a simulta-
neous classification of subfamilies and residues is particularly
adequate for the proposed analysis.
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Fig. S1. Correspondence between the subfamilies and the SwissProt ID equivalences represented in the ROC space, where the distribution of the families is
shown as a bidimensional histogram. The size of the colored boxes in each bin of the ROC space represents the percentage of protein families they contain,
whereas the number shows the actual percentage. For the sake of simplicity, percentage values are rounded to the nearest integer (so that they may not add up
to 100). For the analysis we considered proteins of the same ID group as those for which the first part of the ID coincides (i.e., OAT_HUMAN, OAT_MOUSE,
OAT_YEAST, etc.). These labels correspond to abbreviations of the protein/gene names, and they are the same for the orthologous sequences according to
SwissProt. The set analyzed contains 799 Pfam families fulfilling the following requirements: (i) more than one ID group with at least three sequences; (ii) at
least 25% of the sequences are included in one group; and (iii) no group contains more than 80% of the sequences with an ID group assigned. This analysis aims
to complement those performed through the EC and Interaction labels. The idea is to exploit the functional information implicit in the SwissProt ID names, as
previously performed in other studies (e.g., ref. 24). The plot shows the consistency of the subfamily classification for a large set of families in the context of
functionally coherent sets of orthologues. This consistency can be observed in the tendency of subfamilies to gather a variable number of ID groups without
splitting them (Upper).
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Fig. S2. Correspondence between the different subfamilies obtained by PCA (Left) and CEO (Right), and the EC groups (Top) and specific interactors (Bottom)
for each protein family represented in the ROC space, where the distribution of the families is shown as a bidimensional histogram. The size of the colored
boxes in each bin of the ROC space represents the percentage of protein families they contain (up to a maximum size representing 15%), whereas the number
shows the actual percentage. For the sake of simplicity, percentage values are rounded to the nearest integer (so that they may not add up to 100).
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Fig. S3. Results for the E2F/TDP family of transcription factors (PF02319). Top table: Full list of the positive and negative interactions extracted for this family
(see Methods). Middle table: Swissprot IDs and names of the interacting proteins. Bottom panel: SDPs (Red Surface) mapped to the heterodimeric structure of
human E2F4 (Yellow) - DP2 (Pink) bound to DNA.
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Fig. S4. Distribution of the Cβ-Cβ atom distances from SDPs (Green), from conserved positions (Red), and in the background (Blue) to the ligand binding sites
(Upper) and interaction surfaces (Lower), as averaged per family and per structurally redundant group (see Methods).
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Fig. S5. Bidimensional histograms representing the joint distribution of the closest distances from the SDPs (Green) and the conserved positions (Red) to
ligand binding sites (x axis) and the interfaces (y axis). (A) Joint distribution of the distances in the 168 Pfam families that contain both types of functional
regions. The size of the colored boxes represents the percentage of SDPs and conserved positions of each bin in the histogram, whereas the number shows the
actual percentage. (B) Joint distribution where distances in (A) have been averaged per family and per structurally redundant group. The size of the colored
boxes represents the percentage of structurally nonredundant groups of each bin in the histogram, whereas the number shows the actual percentage. For the
sake of simplicity, percentage values are rounded to the nearest integer in both histograms (so that they may not add up to 100).

Fig. S6. Conditional cumulative percentages of families in which at least one SDP was part of (i) the ligand binding site, (ii) the protein interaction region, or
(iii) both (functional overlap). Percentages are assessed for the 168 Pfam families containing both types of regions.
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Movie S1. The homodimeric structure of the human ornithine aminotransferase (PDB 1oat), a class III aminotransferase, bound to Pyridoxal-5′-phosphate
(Red Spheres). The two subunits of the complex are shown as brown cartoons and gray surface. SDPs are highlighted in a yellow/violet space fill and with a
green surface, respectively.

Movie S1 (AVI)
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Table S1. Equivalences betweenMIPS and eSLDB
subcellular localization categories

MIPS field eSLDB field

701 extracellular Extracellular
705 bud (no equivalent category)
710 cell wall Cell wall
715 cell periphery (no equivalent category)
720 plasma membrane (no equivalent category)
725 cytoplasm Cytoplasm
730 cytoskeleton Cytoskeleton
735 ER Endoplasmic reticulum
740 golgi Golgi
745 transport vesicles Vesicles
750 nucleus Nucleus
755 mitochondria Mitochondrion
760 peroxisome Peroxisome
765 endosome Endosome
770 vacuole Vacuole
775 microsomes Lysosome

Table S2. Datasets of protein families analyzed according to the functional
and structural information gathered

Total number of Pfam families 1262
Within EC set 149
Within Interaction set 72
Within SCOP set AND (ligand binding site OR interface) 316 (230)

With ligand binding site AND interface 168 (127)
With ligand binding site 208 (152)
With interface 276 (205)

With Intra interface 170 (130)
With Homo interface 171 (137)
With Hetero interface 87 (73)

Numbers represent the number of Pfam families in each subset with the corresponding
number of nonredundant SCOP families in parentheses.

Table S3. Results of the Wilcoxon rank sum tests evaluating the “enrichment” at the annotated sites of the SDPs
retrieved by different methodologies

Site & total interface Site Total interface Hetero Homo Intra

p value
Cons 1.92E-27 4.73E-20 1.92E-09 5.32E-02 9.09E-03 4.29E-07
ET 5.55E-26 2.85E-22 4.87E-11 2.86E-04 1.79E-02 3.59E-07
ET-Consfree 7.17E-15 7.04E-13 4.85E-06 8.24E-04 7.09E-02 3.23E-03
MCA 1.67E-05 4.25E-04 1.89E-02 1.75E-02 5.13E-01 4.99E-01
PCA 3.91E-05 3.82E-03 2.59E-02 7.50E-02 5.66E-01 4.51E-01
MB 5.59E-06 1.63E-02 3.03E-04 1.79E-01 1.40E-01 4.32E-02
CEO 8.27E-02 7.64E-01 1.64E-01 3.05E-01 5.02E-01 4.32E-01
Median difference
Cons 15.25% 14.60% 6.34% 1.84% 1.99% 6.76%
ET 13.49% 13.72% 6.12% 4.82% 1.69% 5.56%
ET-Consfree 8.54% 7.94% 3.74% 4.08% 1.21% 2.30%
MCA 5.32% 3.97% 2.00% 4.77% -0.01% 0.00%
PCA 4.48% 2.80% 1.65% 1.94% -0.09% 0.17%
MB 3.62% 1.73% 2.54% 1.33% 0.81% 1.37%
CEO 1.29% -0.56% 0.85% 0.66% 0.00% -0.71%
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Table S4. Main features of the methods used to retrieve protein subfamilies and SDPs.

Method Major methodological category
Subfamily
detection

Preestablished threshold to define
SDPs Reference

MCA Multivariate analysis Yes Yes This work
PCA Multivariate analysis Yes Yes (23); this

work
MB Positional correlation with the global family

variability
No Yes (22)

ET Tree-guided & entropy-based No No (20)
CEO Entropy-based Yes No (21)
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