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SI Text
Proof of the Global Nature of Qmax. . The characteristic equation for
the eigenvalues λ of the linear system defined by Eq. 2 of the main
text is

YN
n¼1

kn ¼
YN
n¼1

ðλþ knÞ [S1]

in which kn are the rate coefficients. The maximal quality factor
Qmax arises for the non-zero eigenvalue and its complex conjugate
with an extremum of the phase arg λ ¼ arctanðℜλ

ℑλÞ ¼ arctanðQÞ,
and always falls within the second and third quadrants
(π∕2 < arg λ < 3π∕2). We find the extrema of the phase by dif-
ferentiating Eq. S1 with respect to ki
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kn
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∂λ
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þ δni

λþ kn
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ki
¼ ∂λ

∂ki ∑
N
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1

λþ kn
þ 1

λþ ki
; [S2]

which we rearrange to obtain

�
∂λ
∂ki

�
−1 λ

kiðλþ kiÞ
¼ S: [S3]

The quantity S≡∑N
n¼1

1
λþkn

is independent of the index i of the
rate coefficient ki.

When taking the derivative of λ with respect to ki, consider the
magnitude and phase separately: ∂λ

∂ki
¼ ∂ ln jλj

∂ki
λþ i ∂ arg λ∂ki

λ. We can

search for the extremum of the phase by setting ∂ arg λ
∂ki

¼ 0. With
this constraint, Eq. S2 becomes

∂ ln jλj
∂ki

kiðλþ kiÞ ¼ S−1 [S4]

We equate the real and imaginary parts on both sides of Eq. S4
and find that

ℜλþ ki
ℑλ

¼ ℜfS−1g
ℑfS−1g [S5]

This equation defines ki implicitly and shows that all ki must be
equal at extrema of the phase, and hence at the maximal quality
factor.

Time-Dependent Gillespie Algorithm. We used a time-dependent
Gillespie method to perform exact stochastic simulations.
Each state i in the Markov ring is associated with a reaction
i → iþ 1. The Gillespie approach consists of sampling the timing
and identity of reaction events, one after the other. Here we out-
line the derivation of the algorithm in the time-dependent case.

The probability density P at time t that reaction i occurs a time
delay τ later may be expressed in terms of the probability P0 that
no reaction takes place during τ and the propensities ai of the
reactions. This results in the usual equation for the joint distribu-
tion of τ and i:

Pðτ; ijn; tÞ ¼ P0ðτjn; tÞ aiðtþ τÞ [S6]

This is the same equation as that obtained with the canonical
Gillespie method except that the propensities here are time-
dependent. To proceed, we require an expression for the prob-
ability that no reaction takes place. P0 satisfies the differential
equation

dP0ðτjn; tÞ
dτ

¼ −P0ðτjn; tÞ∑
N

i¼1

aiðtþ τÞ: [S7]

After integrating with boundary condition P0ðτ ¼ 0Þ ¼ 1, Eq. S7
can be combined with Eq. S6 to give the full joint distribution:

Pðτ; ijtÞ ¼ aiðtþ τÞ exp
 
−∑

N

i¼1

biðt; τÞ
!
; [S8]

which involves the time integral of the propensities:

biðt; τÞ ¼
Z

τ

0

aiðtþ t0Þ dt0 [S9]

For the forcing scheme considered in the main text, the integral of
the time-dependent propensity aN is given by bNðt; τÞ ¼
aN jF¼0 · ðτ þ ½cosðωtÞ − cosðωtþ ωτÞ�F∕ωÞ.

The simulation involves drawing pairs of τ and i to advance
the state of the system. Drawing the time of the next reac-
tion requires sampling from the marginal distribution of τ,
PðτjtÞ ¼ ∑N

i¼1 Pðτ; ijtÞ. One way in which a sample can be ob-
tained involves the inversion of the cumulative distribution
function

FðτjtÞ ¼
Z

τ

0

Pðτ0jtÞ dτ0 ¼ 1 − exp

 
−∑

N

i¼1

biðt; τÞ
!

[S10]

in order to find τ. If the propensities are constant, then bi ¼ τai is
linear in τ and this step requires simply taking the logarithm of
a uniformly distributed random number. For time-dependent
propensities, however, the inversion must be done iteratively.
We implemented a hybrid method that makes Newton-Raphson
iterations except at points where the derivative approaches zero,
whereupon a robust bisection method supervenes.

Once the time to the next reaction, τ�, has been sampled, the
reaction channel can be determined by drawing from the categor-
ical variable i, conditional on τ�:

Pðijτ�; tÞ ¼ aiðtþ τ�Þ
∑

N

i0¼1
ai0 ðtþ τ�Þ [S11]

Mathematica code that implements this algorithm is available at
http://tdgillespie.sourceforge.net.

MasterEquationanditsConnectiontoMacroscopicDynamics.Wecom-
mencewith themaster equation for the occupancies n of the states
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∂Pðn; tÞ
∂t

¼ ∑
N

i¼1

faðiÞðn − sðiÞ; tÞPðn − sðiÞ; tÞ − aðiÞðn; tÞPðn; tÞg

[S12]
in which the sum is over the transitions (also called reaction
channels) i and

aðiÞðn; tÞ ¼ nikiðn; tÞ [S13]

are thepropensities constructed fromtheoccupancyni and the cor-
responding rate coefficient kiðn; tÞ. The vectors sðiÞ are the
columns of the stoichiometry matrix S, the stoichiometric changes
of the transitions. In the N ¼ 4 case,

S ¼

2
664
þ1 0 0 −1
−1 þ1 0 0

0 −1 þ1 0

0 0 −1 þ1

3
775: [S14]

The conservative nature of the dynamics is clear from the fact
that the columns of S sum to zero. As discussed in the main text,
all rates are equal to unity except the first and last. We assert that
the first rate has cooperativity,

k1ðn; tÞ ¼ k0

�
1þ ε

ν

��
c
n1
n�1

þ ð1 − cÞ n2
n�2

�
ν

− 1

��
; [S15]

and the last has time dependence,

kNðn; tÞ ¼ 1þ F sinðωtÞ: [S16]

The macroscopic limit then follows (1) by considering the
ensemble average, defined as the average over all possible occu-
pancies satisfying the constraint ∑N

i¼1 ni ¼ R:

hXi ¼ ∑
n1 ;…;nN

XPðn; tÞ: [S17]

Taken over the master equation, we find

∂hni
∂t

¼ ∑
n1;…;nN

n∑
N

i¼1

n
aðiÞðn − sðiÞ; tÞPðn − sðiÞ; tÞ − aðiÞðn; tÞPðn; tÞ

o
[S18]

¼ ∑
n1;…;nN

∑
N

i¼1

n
ðnþ sðiÞ − nÞaðiÞðn; tÞPðn; tÞ

o

¼∑N
i¼1 s

ðiÞhaðiÞðn; tÞi.

In the macroscopic limit,

∂hni
∂t

¼ ∑
N

i¼1

sðiÞaðiÞðhni; tÞ [S19]

in general (1).

All the rates k, including the nonlinear cooperative one de-
fined in Eq. S15 above, are invariant under a rescaling of n:
aðiÞðhni; tÞ ¼ aðiÞðγhni; tÞ for an arbitrary scaling factor γ. By defin-
ing a dynamical variable x ¼ hni∕R, we therefore retain the func-
tional form of the cooperativity and arrive at Eq. 4 in the
main text.

Stability Analysis About the Fixed Point. The unforced (F ¼ 0)
dynamical equations are:

_x ¼ ðA þ εgðx1; x2ÞBÞx ¼ hðxÞ: [S20]

We expand about x�:

_x ¼ hðx�Þ þ ∇hðx�Þ½x − x�� þ h:o:t:

¼ Ax� þ ðA þ εBx� ⊗ ∇gðx�1; x�2ÞÞ½x − x��¼Ax� þ J½x − x��;
[S21]

in which the symbol ⊗ represents the outer product of two
vectors. The Jacobian is therefore

J ¼

2
664
−k0ð1þ cεÞ −ð1 − cÞε 0 1

k0ð1þ cεÞ ð1 − cÞε − 1 0 0

0 1 −1 0

0 0 1 −1

3
775; [S22]

in which we have used the solution to x� that relates x�2 ¼ k0x�1.
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