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SI Text

Proof of the Global Nature of Q... . The characteristic equation for
the eigenvalues A of the linear system defined by Eq. 2 of the main
text is

N N
11k =T]G+k [S1]
n=1 n=1

in which k,, are the rate coefficients. The maximal quality factor
Onmay arises for the non-zero eigenvalue and its complex conjugate
with an extremum of the phase argd = arctan(%) = arctan(Q),
and always falls within the second and third quadrants
(7/2 < argd < 3z/2). We find the extrema of the phase by dif-

ferentiating Eq. S1 with respect to k;

e-2h

Loy 11
ki akz/1+k i+ k

»‘i’:

iM=
R“|=

[S2]

which we rearrange to obtain

oA\ ! A
(%) ROk~ [531

The quantity S= YN 3 +k is independent of the index i of the
rate coefficient k;.
When taking the derivative of 1 with respect to k;, consider the

magnitude and phase separately: 7 = —an wi—}— Jast ). We can
search for the extremum of the phase by setting ‘)ar’“ = 0. With
this constraint, Eq. S2 becomes

oln|A|
ok;

ki(A+k;) = S~ [S4]

We equate the real and imaginary parts on both sides of Eq. S4
and find that
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[S5]

This equation defines k; implicitly and shows that all k; must be
equal at extrema of the phase, and hence at the maximal quality
factor.

Time-Dependent Gillespie Algorithm. We used a time-dependent
Gillespie method to perform exact stochastic simulations.
Each state i in the Markov ring is associated with a reaction
i — i+ 1. The Gillespie approach consists of sampling the timing
and identity of reaction events, one after the other. Here we out-
line the derivation of the algorithm in the time-dependent case.

The probability density P at time ¢ that reaction i occurs a time
delay 7 later may be expressed in terms of the probability P, that
no reaction takes place during = and the propensities a; of the
reactions. This results in the usual equation for the joint distribu-
tion of 7 and i:
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P(z,ijn,t) = Py(z|n,t)a;(t + 7) [Se6]
This is the same equation as that obtained with the canonical
Gillespie method except that the propensities here are time-
dependent. To proceed, we require an expression for the prob-
ability that no reaction takes place. P, satisfies the differential

equation

dP()(T n,t)
dr

N
= —Py(z|n,?) 2 a;(t + 7). [S7]

i=1

After integrating with boundary condition Py(z = 0) = 1, Eq. S7
can be combined with Eq. S6 to give the full joint distribution:

exp( Zb t‘r) [S8]

which involves the time integral of the propensities:

P(.ilf) =

bilt,7) = / “a(tt)dr [S9]
0

For the forcing scheme considered in the main text, the integral of
the time-dependent propensity ay is given by by(t,7) =
aylp—o * (7 + [cos(wt) — cos(wt + wr)|F /w).

The simulation involves drawing pairs of = and i to advance
the state of the system. Drawing the time of the next reac-
tion requires sampling from the marginal distribution of =,
P(z|f) = ¥¥, P(z,i|r). One way in which a sample can be ob-
tained involves the inversion of the cumulative distribution
function

- N
F(z)t) = /O P(7|t)de =1 —exp (— 2 by(t, T)> [S10]
i=1

in order to find 7. If the propensities are constant, then b; = za; is
linear in 7 and this step requires simply taking the logarithm of
a uniformly distributed random number. For time-dependent
propensities, however, the inversion must be done iteratively.
We implemented a hybrid method that makes Newton-Raphson
iterations except at points where the derivative approaches zero,
whereupon a robust bisection method supervenes.

Once the time to the next reaction, 7*, has been sampled, the
reaction channel can be determined by drawing from the categor-
ical variable i, conditional on 7*:

. a;(t+1)
P(i|t*,t) =
( |T ) Z?;lai’(t+1*)

Mathematica code that implements this algorithm is available at
http://tdgillespie.sourceforge.net.

[S11]

Master Equation and its Connection to Macroscopic Dynamics. We com-
mence with the master equation for the occupancies n of the states
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[S12]
in which the sum is over the transitions (also called reaction
channels) i and

a®(n,1) = nik;(n. 1) [S13]

are the propensities constructed from the occupancy n; and the cor-
responding rate coefficient k;(n,f). The vectors s are the
columns of the stoichiometry matrix S, the stoichiometric changes
of the transitions. In the N = 4 case,

[
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41 0 0 -1
-1 41 0 o0
s=1% 1 4 ol [S14]
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The conservative nature of the dynamics is clear from the fact
that the columns of S sum to zero. As discussed in the main text,
all rates are equal to unity except the first and last. We assert that
the first rate has cooperativity,

& n; n,\v
ki(nt) =ky|14+- —+(1=-c)=] =1¢], S15
1009 °{ W{(Cnﬁ( C)n;) H 5131
and the last has time dependence,

ky(n,t) = 1 + Fsin(wt). [S16]

The macroscopic limit then follows (1) by considering the
ensemble average, defined as the average over all possible occu-
pancies satisfying the constraint YN, n; = R:

[S17]
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[S18]

1. van Kampen N (2007) Stochastic Processes in Physics and Chemistry, 3rd Ed. (North
Holland).
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in general (1).

All the rates k, including the nonlinear cooperative one de-
fined in Eq. S15 above, are invariant under a rescaling of n:
a({n),t) = a¥ (y(n),t) for an arbitrary scaling factor y. By defin-
ing a dynamical variable x = (n)/R, we therefore retain the func-
tional form of the cooperativity and arrive at Eq. 4 in the
main text.

Stability Analysis About the Fixed Point. The unforced (F = 0)
dynamical equations are:

x = (A + g(x1,x;)B)x = h(x). [S20]
We expand about x*:
x = h(x*) + Vh(x*)[x — x*] + h.o.t.
= Ax* + (A + eBx* ® Vg(x},x3))[x — x*|=Ax* + J[x — x*],
[S21]

in which the symbol ® represents the outer product of two
vectors. The Jacobian is therefore

—ko(l+ce) —-(1-c)¢ 0 1
ko(1+ce) (I—c)e—=1 0 0

J 0 1 -1 0| [522]
0 0 1 -1

in which we have used the solution to x* that relates x} = koxj.
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