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PDE3A inhibition increases PKA activation clusters Cytoskeleton disruption scatters
compartmentalized cAMP at PDE3A and CFTR into CFTR and PDE3A away from
the plasma membrane. The microdomains and removes each other. Therefore, PDE3A
increased cAMP activates excess cAMP thus maintaining inhibition no longer activates
CFTR channel function a high specificity CFTR in compartmentalized

fashion

Supplemental Figure S1. Pictorial representation of molecular mechanism of PDE3A coupling to CFTR chloride
channel function.
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Supplemental Figure S2. Representative pseudocolor images of CFP/FRET emission ratio before (time = 0 min)
and after addition of 10-20 uM PDES3 and PDE4 inhibitors cilostazol and rolipram (time = 10 min). Forskolin (20
pUM) was added at the end of the experiment to monitor global cAMP response.
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Supplemental Figure S3. Ratio of FRET at the plasma membrane vs. cytosol in Calu-3
cells (mean +/- SEM, n=5, *p<0.001) indicates compartmentalized distribution of cAMP
upon PDE3 inhibition
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Supplemental Figure S4. (A) Adenosine mediated CFTR short-circuit currents (1) in the presence of PDE3
inhibitor cilostazol are significantly inhibited by actin cytoskeleton disruptor latrunculin B (mean +/- SEM, n=3,
*p<0.001). (B) The data in Figure S4A is converted to percentage (%) of control where control is taken as
maximal 100%. The bar graph shows averaged maximal I after lantrunculin B treatment as a percentage of
the control. The data shows mean +/- SEM, n=3, ns: not significant. *p<0.001 compared with control for each
dose.
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Supplemental Figure S5. Immunoblot for PDE3A expression on the plasma membrane of HEK293 cells

expressing HA-PDE3A. Bound PDE3A clearly shows that about 90% of PDE3A is present at the plasma
membrane.
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Supplemental Figure S6. (A) Quantification of Ussing chamber experimental data in Figure 2
(mean +/- SEM, n=3, *p<0.001). (B) Quantification of Ussing chamber experimental data in
Figure 7 (mean +/- SEM, n=3, *p<0.001).
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