Supporting information

Toward Palau' amine; Hg(OTf)₂-Catalyzed Synthesis of Cyclopentane Core

Kosuke Namba*, Yukari Kaihara, Hirofumi Yamamoto, Hiroshi Imagawa, Keiji, Tanino, Robert M. Williams, and Mugio Nishizawa*

Division of Chemistry, Graduate School of Science, Hokkaido University Kita-ku, Sapporo 060-0810 (JAPAN) Fucluty of Pharmaceutical Sciences, Tokushima Bunri University 180 Nishihama Boji, Yamashiro-cho, Tokushima, 770-8514 (JAPAN) Department of Chemistry, Colorado State University Fort Collins, Colorado 80523 (USA) and the University of Colorado Cancer Center Aurora, Colorado 80045 (USA)

> Tel: (+81) 88-602-8446 Fax: (+81) 88-655-3051 E-mail: <u>namba@mail.sci.hokudai.ac.jp</u>, mugi@ph.bunri-u.ac.jp

• Experimental Detail

S02 - S16

• ¹H NMR and ¹³C NMR spectra of each intermediate from **9** to **31** and lactone **21** S17 - S53

• X-ray data of 24α and 32

S54 – S69

General Procedures and Methods

FTIR spectra were measured on a JASCO FT/IR-410 infrared spectrophotometer. NMR spectra were recorded on a Varian Mercury prus-300-4N spectrometer. Chemical shifts are reported in parts per million (ppm). For ¹H NMR spectra (CDCl₃), the residual solvent peak was used as the internal reference (7.24 ppm), whereas the central solvent peak as the reference (77.03 ppm) for ¹³C NMR spectra (CDCl₃). Mass spectra were recorded on a JEOL the Mstation JMS-700. Analytical thin layer chromatography (TLC) was performed with E. Merck pre-coated TLC plates, silica gel 60F-254, layer thickness 0.25 mm. Flash chromatography was performed on Kanto Chemical 60 (63-210) mesh silica gel. Reagents and solvents are commercial grade and were used as supplied. Mercury triflate was prepared by the following procedure; to a suspension of HgO (541.4 mg, 2.5 mmol) in acetonitrile (5 mL) was dropwise added Tf₂O (705.3 mg, 2.5 mmol) at 0 °C, and the mixture was stirred at 0 °C until the yellow color disappear. The resulting colorless solution was transferred to 25 mL of messflask and diluted with anhydrous acetonitrile to give 0.1M solution.

2-(2-(*tert*-butyldimethylsilyloxy)-1-hydroxyethyl)cyclopent-2-enone (10)

To a solution of 2-cyclopentene-1-one **9** (4.71 g, 57.4 mmol) in THF (57 mL) was added (tert-Butyldimethylsilyloxy)-acetaldehyde (10.0 g, 57.4 mmol) and *n*-tributylphosphine (1.43 mL, 5.74 mmol). The mixture was stirred for 4 h at room temperature and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (elution with hexane/ethyl acetate = 4/1 to 2/1) to give **10** (10.3 g, 70%) as colorless amorphous. IR (neat) 3444, 2928, 2857, 1698, 1252, 1120, cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.63 (td, *J* = 2.8, 1.6 Hz, 1H), 4.48-4.55 (m, 1H), 3.84 (dd, *J* = 10.0, 3.6 Hz, 1H), 3.52 (dd, *J* = 10.0, 6.4 Hz, 1H), 3.11 (d, *J* = 4.8 Hz, 1H), 2.58-2.68 (m, 2H), 2.41-2.47 (m, 2H), 0.89 (s, 9H), 0.06 (s, 3H), 0.05 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 208.8, 159.9, 145.1, 68.3, 65.7, 35.2, 26.8, 25.8, 18.2, -5.4, -5.5; HRMS (CI) m/z [M+H]⁺ calcd for [C₁₃H₂₄O₃Si+H]⁺ 257.1573, found 257.1575.

2-(*tert*-butyldimethylsilyloxy)-1-(5-hydroxycyclopent-1-enyl)ethyl acetate (11)

To a solution of 10 (4.0 g, 15.6 mmol) in pyridine (15 mL) was added acetic anhydride (7.37 mL, 78 mmol) at 0 °C. The mixture was stirred for 15 h at 0 °C and concentrated under reduced pressure. The residue was subjected to short-pass flash chromatography on silica gel (elution with hexane/ethyl acetate = 20/1 to 4/1) to give crude acetylated 11 which was used without further purification. To a solution of crude acetylated 11 in methanol (67 mL) was added NaBH₄ (1.0 g, 26.7 mmol) at -20 °C. The mixture was stirred for 1 h, quenched with saturated NH₄Cl (20 mL), and extracted with diethyl ether (40 mL x 3). The combined organic layers were washed with brine, dried over anhydrous MgSO4, filtered, concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (elution with hexane/ethyl acetate = 6/1) to give 11 (2.56 g, 55%) as colorless oil (1.5 : 1 diastereometric mixture). IR (neat) 3452, 2930, 1740, 1372, 1254, cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 5.80 (br s, 1Ha+1Hb), 5.42 (t, J = 4.5 Hz, 1Ha), 5.36 (t, J = 5.7 Hz, 1Hb), 4.69 (br s, 1Ha), 4.67 (br s, 1 Hb), 3.79 (dd, J = 11.4, 3.9 Hz, 1Ha), 3.78 (d, J = 5.7 Hz, 2Hb), 3.71 (dd, J = 11.4, 4.8 Hz, 1Ha), 3.50 (br s, 1Ha), 3.11 (br s, 1Hb), 2.32-2.50 (m, 1Ha + 1Hb), 2.04-2.24 (m, 2Ha + 2Hb), 2.01 (s, 3Hb), 2.00 (s, 3Ha), 1.64-1.82 (m, 1Ha + 1Hb), 0.82 (s, 9Ha + 9Hb), 0.01 (s, 6Ha + 6Hb); 13 C NMR (75 MHz, CDCl₃) δ 142.7, 142.4, 133.2, 131.8, 76.6, 75.6, 72.6, 71.9, 64.7, 64.4, 33.3, 33.0, 29.9(x2), 25.7(x2), 21.1, 21.0, 18.2, 18.1, -5.4, -5.5; HRMS (CI) m/z [M-H]⁻ calcd for [C₁₅H₂₈O₄Si-H]⁻ 299.1678, found 299.1679.

The modified condition was found after the above examination. However, a large scales synthesis of modified condition was not tried, because the sufficient amount of **11** for the cyclopentane core was already obtained. The modified condition is next; to a solution of **10** (45.6 mg, 0.18 mmol) in pyridine (0.5 mL) was added acetic anhydride (84.1 μ L, 78 mmol) at 0 °C. The mixture was stirred for 25 h at room temperature and concentrated under reduced pressure. The residue was subjected to short-pass flash chromatography on silica gel (elution with hexane/ethyl acetate = 9/1) to give crude acetylated **11** which was used without further purification. To a solution of crude acetylated **11** in methanol (19 mL) was added NaBH₄ (215 mg, 5.69 mmol) at -78 °C. The mixture was stirred for 1 h, quenched with saturated NH₄Cl (5 mL), and extracted with diethyl ether (10 mL x 3). The combined organic layers were washed with brine,

dried over anhydrous MgSO4, filtered, concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (elution with hexane/ethyl acetate = 6/1) to give **11** (1.0 g, 70%) as colorless oil (1.5 : 1 diastereometric mixture).

2-(*tert*-butyldimethylsilyloxy)-1-(5-(*tert*-butyldimethylsilyloxy)cy clopent-1-enyl)ethyl acetate (12)

To a solution of 11 (3.12 g, 10.4 mmol) in dichloromethane (10.4 mL) was added trietylamine (3.62 mL, 26.0 mmol) and TBSOTf (2.87 mL, 12.5 mmol) successively at 0 °C. The mixture was stirred for 10 min at 0 °C, quenched with sat. NaHCO₃, and extracted with dichloromethane (x3). The combined organic layers were washed with sat. NaHCO₃, dried over anhydrous MgSO₄, filtered, concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (elution with hexane/dichloromethane = 2/1 to 1/1 to 1/4) to give 12 (3.8 g, 88%) as pale yellow amorphous (2 : 1 diastereomeric mixture). 12a; IR (neat) 2929, 2857, 1741, 1362, 1237 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 5.78 (br s, 1H), 5.26 (br d, J =7.5 Hz, 1H), 4.85 (m, 1H), 3.84 (dd, J = 10.8, 3.0 Hz, 1H), 3.63 (dd, J = 10.8, 8.1 Hz, 1H), 2.28-2.44 (m, 1H), 2.08-2.26 (m, 2H), 2.00 (s, 3H), 1.52-1.66 (m, 1H), 0.89 (s, 9H), 0.83 (s, 9H), 0.07 (s, 3H), 0.05 (s, 3H), 0.01 (s, 6H); 13 C NMR (75 MHz, CDCl₃) δ 170.4, 142.8, 130.2, 78.5, 72.6, 64.8, 34.1, 29.9, 25.9, 25.7, 21.2, 18.2, 18.0, -4.3, -4.9, -5.3 (x2); HRMS (CI) m/z $[M]^+$ calcd for $[C_{21}H_{42}O_4Si_2]^+$ 414.2622, found 414.2623. **12b**; IR (neat) 2929, 2857, 1751, 1362, 1234 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 5.78 (dd, J = 7.5, 3.3 Hz, 1H), 5.76 (br s, 1H), 4.73-4.83 (m, 1H), 3.78 (dd, J = 11.1, 7.5 Hz, 1H), 3.67 (dd, J = 10.8, 3.3 Hz, 1H), 2.34-2.46 (m, 1H), 2.12-2.25 (m, 2H), 2.03 (s, 2H)3H),1.62-1.74 (m, 1H), 0.88 (s, 9H), 0.83 (s, 9H), 0.07 (s, 3H), 0.06 (s, 3H), 0.01 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 170.1, 142.1, 130.8, 77.2, 73.5, 64.7, 34.4, 29.9, 25.9, 25.7, 21.2, 18.2, 18.0, -4.3, -4.8, -5.3 (x2); HRMS (CI) m/z [M-H]⁻ calcd for $[C_{21}H_{42}O_4Si_2-H]^-$ 413.2548, found 413.2547.

(Z)-N-benzyl-2-(3-(*tert*-butyldimethylsilyloxy)-2-(2-(*tert*-butyldi methylsilyloxy)ethylidene)cyclopentyl)acetamide (15)

0

BnHN

TBSO-ÓTBS To a solution of LHMDS (3.46 mL, 1M solution in THF) in THF (10 mL) was added a solution of TBSCl (661 mg, 4.38 mmol) in HMPA (2.97 mL, 17.0 mmol) at -78 °C. The mixture was stirred for 10 min. at -78 °C. To the mixture was added a solution of 12 (784 mg, 1.89 mmol) in THF (2 mL) at -78 °C. The mixture was stirred for 20 min. at 0 °C, quenched with iced water, and extracted with diethyl ether (x2). The combined organic layers were dried over $MgSO_4$, filtered, and concentrated under reduced pressure. The solution of residue in toluene (5 mL) was heated to reflux for 1 h, cooled down to room temperature, and concentrated under reduced pressure. To the solution of residue in THF (24 mL) was added H₂O (7 mL) at room temperature. The mixture was stirred for 3 h, concentrated under reduced pressure to give carboxylic acid 14 which was used without further purification. To a solution of crude 14 in dichloromethane (7 mL) was added benzylamine (125 µL, 1.14 mmol), EDCI (272 mg, 1.42 mmol), and DMAP (23 mg, 0.19 mmol) at room temperature. The mixture was stirred for 25 min., quenched with sat. NH₄Cl, and extracted with ethyl acetate (20 mL x 3). The combined organic layers were washed with brine, dried over anhydrous MgSO4, filtered, concentrated under reduce pressure. The residue was purfied by flash column chromatography on silica gel (elution with hexane/ethyl acetate = 10/1 to 8/1 to 6/1 to 4/1 to 2/1) to give 15 (124 mg, 70%) as colorless amorphous (2 : 1 diastereometric mixture). 15a: IR (neat) 3286, 2954, 2856, 1644, 1555, 1255, 1008 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.25-7.36 (m, 5H), 5.81 (br s, 1H), 5.38 (ddt, J = 6.8, 4.8, 2.4, 1H), 4.62 (t, J = 6.8, 1H), 4.48 (dd, J = 14.8, 6.0 Hz, 1H), 4.39 (dd, J = 14.8, 5.6 Hz, 1H), 4.32 (s, 2H), 2.93-3.05 (m, 1H), 2.55 (dd, J = 14.4, 4.8 Hz, 1H), 2.05 (dd, J = 14.4, 9.2 Hz, 1H), 1.94-2.08 (m, 2H), 1.48-1.60 (m, 1H), 1.10-1.23 (m, 1H), 0.89 (s, 9H), 0.88 (s, 9H), 0.09 (s, 3H), 0.07 (s, 3H), 0.06 (s, 3H), 0.05 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.8, 146.8, 138.3, 128.7, 127.9, 127.5, 125.1, 72.9, 61.2, 43.6, 41.1, 39.3, 34.9, 29.2, 26.0, 25.8, 18.4, 17.9, -3.7, -4.7, -5.0, -5.1; HRMS (CI) m/z (M+H)⁺ calcd for ⁺ $[C_{28}H_{49}NO_3Si_2+H]^+$ 504.3329, found 504.3332. **15b**: IR (neat) 3288, 2955, 1644, 1549, 1254 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.23-7.35 (m, 5H), 5.86 (br t, J = 5.6 Hz, 1H), 5.48 (ddt, J = 8.0, 4.0, 1.6 Hz, 1H), 4.62-4.67 (m, 1H), 4.43 (d, J = 5.6 Hz, 2H), 4.28 (ddd, J = 13.2, 8.0, 0.8 Hz, 1H), 4.18 (ddd, J = 13.2, 4.0, 1.6 Hz, 1H), 2.87 (quint, J = 7.2 Hz, 1H), 2.50 (dd, J = 14.4, 6.8 Hz, 1H), 2.30 (dd, J = 14.0, 8.0 Hz, 1H),

1.55-1.92 (m, 4H), 0.89 (s, 9H), 0.82 (s, 9H), 0.06 (s, 6H), 0.05 (s, 3H), 0.05 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.9, 147.2, 138.4, 128.6, 127.9, 127.4, 125.7, 71.9, 61.1, 43.5, 42.9, 40.4, 35.0, 29.2, 25.9, 25.7, 18.4, 17.8, -4.1, -4.8, -5.1, -5.1; HRMS (CI) m/z (M+H)⁺ calcd for ⁺ [C₂₈H₄₉NO₃Si₂+H]⁺ 504.3329, found 504.3322.

BnHŃ

(Z)-N-benzyl-2-(3-hydroxy-2-(2-hydroxyethylidene)cyclopentyl)acet amide (16)

HO óн A solution of 15 (124 mg, 0.25 mmol) in acetic acid (1.5 mL), water (1.5 mL), and THF (1.5 mL) was stirred for 15 h at room temperature and concentrated under reduced pressure. The residue was purified by flash column chromatography of silica gel (elution with dichloromethane/methanol = 20/1) to give **16** (52.3 mg, 70%) as yellow amorphous (2 : 1 diastereomeric mixture). 16a: IR (neat) 3297, 2929, 1650, 1556, 1455, 1008 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.04-7.08 (m, 5H), 6.19 (br t, J = 5.6 Hz, 1H), 5.63 (tt, J = 6.4, 1.6 Hz, 1H), 4.73 (d, J = 4.8 Hz, 1H), 4.41 (d, J = 5.6Hz, 2H), 4.28 (ddd, J = 12.8, 7.2, 1.6 Hz, 1H), 4.08 (dd, J = 12.0, 6.4 Hz, 1H), 2.77-2.88 (m, 1H), 2.54 (dd, J = 14.8, 6.0 Hz, 1H), 2.39 (dd, J = 14.8, 7.2 Hz, 1H), 1.64-1.94 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 172.0, 152.1, 138.2, 128.7, 127.9, 127.6, 124.2, 71.5, 59.9, 43.6, 41.1, 39.9, 34.1, 29.2; HRMS (CI) m/z (M+H)⁺ calcd for ⁺ $[C_{16}H_{21}NO_3+H]^+$ 276.1599, found 276.1615. **16b**: IR (neat) 3289, 2930, 1638, 1549 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.25-7.40 (m, 5H), 5.78 (br t, J = 5.6 Hz, 1H), 5.64 (tt, J = 6.4, 2.0 Hz, 1H), 4.79 (t, J = 6.4 Hz, 1H), 4.44 (d, J = 5.6 Hz, 2H), 4.29 (dd, J = 13.2, 6.4 Hz, 1H), 4.19 (dd, J = 13.2, 6.4 Hz, 1H), 3.05-3.15 (m, 1H), 2.81 (br s, 1H), 2.55 (br s, 1H), 2.41 (dd, J = 14.4, 6.0 Hz, 1H), 2.11 (dd, J = 14.4, 8.4 Hz, 1H), 2.04-2.15 (m, 2H), 1.58-1.70 (m, 1H), 1.25-1.36 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 171.7, 152.4, 138.4, 129.0, 128.2, 127.9, 124.0, 72.4, 60.1, 43.9, 41.6, 40.3, 34.1, 29.7; HRMS (CI) m/z (M-H)⁻ calcd for $[C_{16}H_{21}NO_3-H]^-$ 274.1443., found 274.1440.

(*Z*)-*N*-benzyl-2-(2-(2-(benzyloxy)ethylidene)-3-hydroxycyclopentyl)acetamide (17) (2 : 1 diastereomeric mixture) ¹H NMR (300 MHz, CDCl₃) δ 7.22-7.39 (m, 10Ha+10Hb), 5.85 (br s, 1Hb), 5.72 (br s, 1Ha), 5.42-5.64 (m, 1Ha+1Hb), 4.64-4.72 (m, 1Ha+1Hb), 4.53 (s, 1Ha), 4.52 (s, 1Hb), 4.43 (d, *J* = 3.9 Hz, 1Ha), 4.41 (d, *J* = 5.4 Hz, 1Ha) 1Hb), 4.18 (dd, *J* = 11.7, 6.0 Hz, 1Hb), 4.12-4.24 (m, 1Ha), 4.07 (dd, *J* = 11.7, 7.2 Hz, 1Hb), 4.04-4.12 (m, 1Ha), 3.32 (br s, 1Hb), 3.11 (br s, 1Ha), 2.80-2.96 (m, 1Ha+1Hb), 2.53 (dd, *J* = 14.7, 5.4 Hz, 1Hb), 2.41 (dd, *J* = 14.7, 5.4 Hz, 1Ha), 2.35 (dd, *J* = 14.4, 6.9 Hz, 1Hb), 2.34-2.44 (m, 1Ha), 1.55-2.10 (m, 4Ha+4Hb).

(Z)-2-(3-hydroxy-2-(2-hydroxyethylidene)cyclopentyl)acetamide (18)

(2 : 1 diastereomeric mixture) ¹H NMR (200 MHz, CD₃OD) δ 5.42-5.64 (m, 1Ha+1Hb), 4.56-4.64 (m, 1Ha+1Hb), 4.06-4.20 (m, 2Ha+2Hb), 2.78-2.92 (m, 1Ha), 2.61-2.74 (m, 1Hb), 2.43 (dd, *J* = 14.2, 5.8 Hz, 1Hb), 2.35 (dd, *J* = 14.2, 5.6 Hz, 1Ha), 2.14 (dd, *J* = 14.2, 9.0 Hz, 1Hb), 1.97 (dd, *J* = 14.2, 9.6 Hz, 1Ha), 1.10-205 (m, 4Ha+4Hb).

(Z)-3-(2-amino-2-oxoethyl)-2-(2-(*tert*-butyldimethylsilyloxy)ethylidene)cyclopentyl benzoate (19)

To a solution of **11** (1.62 g, 5.39 mmol) in THF (10 mL) was added pyridine (1.75 mL, 21.6 mmol), DMAP (66 mg, 0.54 mmol), and benzoyl chloride (1.25 mL, 10.8 mmol) at 0 °C. The mixture was stirred for 6 h at room temperature, quenched with sat.NH₄Cl, and extracted with ethyl acetate (x3). The combined organic layers were washed with sat. NaHCO₃, dried over anhydrous MgSO₄, filetered, concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (elution with hexane/ethyl acetate = 10/1) to give **Bz 12** (2.17 g, quant.) as colorless amorphous (2 : 1 diastereomeric mixture). IR (neat) 2954, 2857, 1790, 1747, 1281 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.09-8.04 (m, 2Ha + 2Hb), 7.46-7.53 (m, 1Ha + 1Hb), 7.34-7.42 (m, 2Ha + 2Hb), 6.11 (br s, 1Ha), 6.02-6.05 (m, 1Hb), 5.97-6.30 (m, 1Ha), 5.89-5.94 (m, 1Hb), 5.57 (t, *J* = 4.8 Hz, 1Hb), 5.50 (t, *J* = 5.2 Hz, 1Ha), 3.70-3.85 (m, 2Ha + 2Hb), 2.28-2.58 (m, 3Ha + 3Hb), 2.01 (s, 3Hb), 1.86 (s, 3Ha), 1.82-1.85 (m, 1Ha + 1Hb), 0.81 (s, 9Ha), 0.80 (s, 9Hb), -0.01 (s, 6Ha), -0.04 (s, 6Hb); ¹³C NMR (100 MHz, CDCl₃) δ 170.1(a), 170.1(b), 166.3(b), 166.1(a), 138.3(b), 138.1(a), 136.3(b), 134.9(a), 134.5(b), 132.8(a), 130.5(b), 130.3(a), 129.5(b), 129.5(a), 128.8(b), 128.2(a), 79.9(a),

79.8(b), 72.5(b), 71.7(a), 64.3(b), 63.9(a), 31.1(a), 31.1(b), 30.4 (a), 30.4 (b), 25.7 (a), 25.7(b), 21.0(a), 20.9(b), 18.1(a), 18.1(b), -5.5(a), -5.5(b); HRMS (CI) m/z (M+H)⁺ calcd for ${}^{+}[C_{22}H_{32}N_2O_5Si+H]^{+}$ 405.2097, found 405.2098.

According to the Ireland-Claisen rearrangement of 12 to give 14, the related compound Bz14 was obtained with same manner from Bz12 (194 mg, 0.38 mmol). To the mixture of crude Bz14 in chloroform (0.72 mL) and triethylamine (81 mL, 0.58 mmol) was dropwised a solution of ethyl chlorocarbonate (55 mL, 0.58 mmol) in chloroform (0.72 mL) at -30 °C. The mixture was stirred for 1.5 h at 0 °C, bubbled through a ammonia gas for 20 min at 0 °C and 1.5 h at room temperature. The mixture was washed with 5% NaOH (x2), dried over anhydrous MgSO4, filtered, concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (elution with hexane/ethyl acetate = 4/1 to 2/1 to ethyl acetate) to give **19** (115 mg, 5 steps, 75% from **Bz12**) as colorless amorphous. (1 : 2 diastereomeric mixture). IR (neat) 3351, 3196, 2954, 2856,1716, 1680, 1391, 1276 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.90-8.02 (m, 1Ha+2Hb), 7.77 (dt, J = 6.9, 1.8 Hz, 1Ha), 7.42-7.54 (m, 3Ha), 7.02-7.42 (m, 3Hb), 6.46 (br s, 2Ha), 6.21 (br s, 2Hb), 5.70-5.94 (m, 1Ha+1Hb), 5.60-5.70 (m, 1Hb), 5.52-5.60 (m, 1Ha), 4.25 (ddd, J = 13.5, 7.2, 1.8 Hz, 1Ha), 4.14-4.26 (m, 2Hb), 4.16 (ddd, J = 13.5, 5.4, 2.1 Hz, 1Ha), 3.0-3.16 (m, 1Ha), 2.85-3.00 (m, 1Hb), 2.57 (dd, J = 14.4, 5.4 Hz, 1Hb), 2.51 (dd, J = 14.4, 5.1 Hz, 1Ha), 2.30 (dd, J = 14.4, 8.7 Hz, 1Hb), 2.18-2.34 (m, 1Ha), 2.12 (dd, J = 14.4, 9.3 Hz, 1Ha), 2.25 (dd, J = 14.4, 6.9 Hz, 1Ha), 1.80-2.14 (m, 2Ha+2Hb), 1.50-1.78 (m, 1Ha+1Hb), 1.31 (dg, J = 12.6, 8.4 Hz, 1Hb), 0.79 (s, 9Ha+9Hb), -0.05 (s, 6Ha), -0.05 (s, 6Hb); ¹³C NMR (100 MHz, CDCl₃) δ 174.5, 169.8, 165.9, 165.7, 143.3, 143.2, 132.9, 131.9, 130.2, 130.0, 129.5, 128.7, 128.3, 128.3, 127.4, 127.3, 74.5, 74.3, 60.9, 60.6, 41.6, 40.0 (x2), 39.3, 32.5, 31.6, 29.8, 29.5, 25.9, 25.8, 18.2 (x2), -5.2 (x2); HRMS (CI) m/z (M+H)⁺ calcd for $[C_{22}H_{33}NO_4Si+H]^+$ 404.2257, found 404.2267.

(*Z*)-3-(2-amino-2-oxoethyl)-2-(2-hydroxyethylidene)cyclopentyl benzoate (20)

HO ÓВz The mixture of 19 (115 mg, 0.29 mmol) in acetic acid (1.5 mL), H₂O (0.5 mL), and THF (0.5 mL) was stirred for 4.6 h at room temperature and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (elution with ethyl acetate to ethyl acetate/methanol = 8/1) to give 20 (104 mg, quant.) as colorless amorphous (2 : 1 diastereomeric mixture). IR (neat) 3347, 3198, 2961, 1714, 1452, 1279 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.88-8.01 (m, 2Ha+2Hb), 7.55 (tt, J = 7.6, 1.2 Hz, 1Ha+1Hb), 7.42 (td, J = 7.6, 1.2 Hz, 2Ha+2Hb), 6.17 (br s, 1Hb), 6.04 (br s, 1Ha), 5.88-5.98 (m, 2Ha+2Hb), 5.77 (tt, J = 6.4, 2.0 Hz, 1Ha), 5.69 (tt, *J* = 6.8, 2.0 Hz, 1Hb), 4.14-4.28 (m, 2Ha+2Hb), 3.02-3.18 (m, 1Hb), 2.90-3.0 (m, 1Ha), 2.54 (dd, J = 14.4, 6.0 Hz, 1Ha), 2.49 (dd, J = 14.4, 6.0 Hz, 1Hb), 2.14-2.40 (m, 1Ha+1Hb), 2.35 (dd, J = 14.4, 8.0 Hz, 1Ha), 2.20 (dd, J = 14.4, 8.0 Hz, 1Hb), 1.84-2.32 (m, 2Ha+3Hb), 1.72-1.84 (m, 1Hb), 1.60-1.74 (m, 1Ha), 1.39 (dq, J = 12.4, 7.6 Hz, 1Ha); ¹³C NMR (100 MHz, CDCl₃) δ 174.8, 174.7, 166.2, 166.0, 145.0, 144.9, 133.2, 133.2, 130.2, 130.0, 129.6, 129.5, 128.5, 128.4, 128.0, 126.5, 74.6, 74.4, 60.0, 59.6, 41.8, 40.0, 39.8, 39.1, 32.4, 31.4, 29.8, 29.4; HRMS (CI) m/z (M+H)⁺ calcd for ⁺ $[C_{16}H_{19}NO_4+H]^+$ 289.1392, found 290.1396.

2-oxo-6a-vinylhexahydro-2*H*-cyclopenta[*b*]furan-6-yl benzoate (21)

To a solution of **19** (14.5 mg, 0.05 mmol) in nitromethane (0.25 mL) was added Hg(OTf)₂ (100 μ L, 0.1 M solution in acetonitrile). The

 H_2N

mixture was heated to 60 °C for 7 h, quenched with triethylamine (0.2 mL), and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (elution with chloroform) to give **21** (10.9 mg, 80%) as colorless amorphous (1 : 1.5 diastereomeric mixture). IR (neat) 2961, 1787, 1724, 1275, 1117 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ **21a**; 7.96-8.04 (m, 2H), 7.59 (tt, *J* = 7.5, 1.2 Hz, 1H), 7.47 (tt, 8.4, *J* = 1.2 Hz, 2H), 6.07 (dd, *J* = 17.1, 11.1 Hz, 1H), 5.45-5.51 (m, 1H), 5.44 (dd, *J* = 17.1, 0.9 Hz, 1H), 5.25 (dd, *J* = 11.1, 0.9 Hz, 1H), 2.92 (td, *J* = 9.3, 4.5 Hz, 1H), 2.84 (dd, *J* = 17.7, 9.3 Hz, 1H), 2.40 (d, *J* = 17.1 Hz, 1H), 2.20-2.45 (m, 2H), 1.94-2.06 (m, 1H), 1.58-1.72 (m, 1H), **21b**; 8.02-8.10 (m, 2H), 7.57 (tt, *J* = 7.5, 1.8 Hz, 1H), 7.44 (tt, *J* = 7.4, 1.5 Hz, 2H), 5.94 (dd, *J* = 17.4, 10.8 Hz, 1H),

5.43 (dd, J = 17.4, 0.6 Hz, 1H), 5.32 (dd, J = 9.3, 5.7 Hz, 1H), 5.24 (dd, J = 10.8, 0.3 Hz, 1H), 2.90 (dd, J = 18.0, 9.3 Hz, 1H), 2.70-2.80 (m, 1H), 2.38 (dd, J = 18.0, 2.1 Hz, 1H), 1.95-2.28 (m, 3H), 1.61-1.72 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ **21a**; 176.1, 165.0, 133.9, 133.3, 129.8, 129.6, 128.5, 116.2, 95.7, 80.5, 42.2, 35.4, 30.9, 30.8, **21b**; 176.7, 166.0, 135.7, 133.3, 129.9, 129.5, 128.4, 116.5, 93.2, 77.7, 40.7, 36.3, 28.4, 28.3; HRMS (CI) m/z (M+H)⁺ calcd for ⁺[C₁₆H₁₆O₄+H]⁺ 273.1127, found 273.1126.

NC

TBSO

ÓТВS

(Z)-2-(2-(tert-butyldimethylsilyloxy)ethylidene)-3-(cyanomethyl)cy

clopentyl benzoate (1 : 1.5 diastereomeric mixture)

IR (neat) 2955, 2856, 2247, 1715, 1264, 1109 cm⁻¹; ¹H NMR (300 ^{TBSO^{-J}} ^bBz MHz, CDCl₃) δ 7.94-8.02 (m, 2Ha+2Hb), 7.49-7.57 (m, 1Ha+1Hb), 7.41 (t, *J* = 7.8 Hz, 1Ha+1Hb), 5.82-5.95 (m, 1Ha+1Hb), 5.74 (ddt, *J* = 6.9, 4.5, 1.5 Hz, 1Hb), 5.66 (tt, *J* = 6.0, 2.4 Hz, 1Ha), 4.40 (ddd, *J* = 13.5, 7.5, 1.5 Hz, 1Ha), 4.24 (dd, *J* = 6.3, 1.8 Hz, 2Hb), 4.19 (ddd, *J* = 13.5, 4.5, 2.1 Hz, 1Ha), 2.92-3.06 (m, 1Ha), 2.76-2.90 (m, 1Hb), 2.64 (dd, *J* = 16.5, 5.4 Hz, 1Hb), 2.58 (dd, *J* = 16.5, 5.1 Hz, 1Ha), 2.54 (dd, *J* = 16.5, 7.8 Hz, 1Hb), 2.39 (dd, *J* = 16.5, 8.1 Hz, 1Ha), 1.70-2.40 (m, 4Ha+4Hb), 0.82 (s, 9Hb), 0.81 (s, 9Ha), -0.01 (s, 3Ha+3Hb), -0.03 (s, 3Hb), -0.03 (s, 3Ha); ¹³C NMR (75 MHz, CDCl₃) δ 165.8, 165.7, 133.1, 133.1, 130.6, 130.0, 129.6, 129.6, 129.5, 129.4, 128.4, 128.4, 118.3, 118.3, 74.0, 73.9, 60.8, 60.5, 39.5, 38.9, 32.4, 31.4, 29.5, 29.3, 25.8, 23.0, 21.6, 18.2, -5.3, -5.3; HRMS (FAB) m/z (M+Na)⁺ calcd for ⁺[C₂₂H₃₁NO₃Si+Na]⁺ 408.1971, found 408.1988.

(*Z*)-*N*-(2-(3-(*tert*-butyldimethylsilyloxy)-2-(2-(*tert*-butyldimethyl silyloxy)ethylidene)cyclopentyl)acetyl)-4-methylbenzenesulfono hydrazide (23)

To a solution of LHMDS (10.5 mL, 1.6 M solution in THF) in THF (25 mL) was added a solution of TBSCl (3.2 g, 21.3 mmol) in HMPA (14.4 mL, 82.6 mmol) at -78 °C. The mixture was stirred for 15 min. at -78 °C. To the mixture was added a solution of **12** (3.8 mg, 9.16 mmol) in THF (5 mL) at -78 °C. The mixture was stirred for 1 h at 0 °C, quenched with iced water, and extracted with hexane (x2). The combined organic layers were dried over MgSO₄, filtered, and concentrated under

reduced pressure. The solution of residue in toluene (15 mL) was heated to reflux for 50 min, cooled down to room temperature, and concentrated under reduced pressure. To the solution of residue in THF (65 mL) was added H₂O (10 mL) at room temperature. The mixture was stirred for 3 h, concentrated under reduced pressure to give carboxylic acid 14 which was used without further purification. To a solution of crude 14 in dichloromethane (70 mL) was added N-tosylhydrazide (3.3 g, 17.8 mmol), EDCI (4.3 g, 22.2 mmol), and DMAP (362 mg, 3.0 mmol) at room temperature. The mixture was stirred for 1 h, quenched with sat. NH_4Cl , and extracted with dichloromethane (50 mL x 3). The combined organic layers were washed with brine, dried over anhydrous $MgSO_4$, filtered, concentrated under reduce pressure. The residue was purfied by flash column chromatography on silica gel (elution with hexane/ethyl acetate = 8/1) to give 23 (3.6 g, 68%) as colorless amorphous (2 : 1 diastereomeric mixture). 23a: IR (neat) 3363, 2955, 2857, 1703, 1360, 1255, 1167 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.89 (dt, J = 8.4, 2.0 Hz, 2H), 7.33 (d, J = 8.4 Hz, 2H), 5.29-5.35 (m, 1H), 4.62 (br t, J = 6.0 Hz, 1H), 4.42 (s, 2H), 4.33 (ddd, J = 13.6, 7.6, 1.6 Hz, 1H), 4.29 (dddd, J = 13.6, 4.4, 3.2, 1.2 Hz, 1H), 3.00 (dd, J = 15.2, 4.8, 1H), 2.87-2.97 (m, 1H), 2.60 (dd, J = 15.6, 9.2 Hz, 1H), 2.44 (s, 3H), 1.91-2.02 (m, 2H), 1.44-1.56 (m, 1H), 1.08-1.16 (m, 1H), 0.90 (s, 9H), 0.86 (s, 9H), 0.09 (s, 3H), 0.07 (s, 3H), 0.06 (s, 6H); 13 C NMR (100 MHz, CDCl₃) δ 173.8, 146.7, 145.2, 134.9, 129.6, 128.7, 125.0, 72.8, 61.2, 40.0, 38.5, 34.9, 29.3, 26.0, 25.8, 21.7, 18.4, 17.9, -3.8, -4.7, -5.04, -5.07; HRMS (CI) m/z (M+H)⁺ calcd for ⁺ $[C_{28}H_{50}N_2O_5SSi_2+H]^+$ 583.3057., found 583.3055. **23b**: IR (neat) 3369, 2955, 2857, 1703, 1359, 1169 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.89 (dt, J = 8.4, 1.6 Hz, 2H), 7.33 (d, J = 8.4 Hz, 2H), 5.37 (ddt, J = 8.0, 4.0, 1.6 Hz, 1H), 4.61 (t, J = 3.2 Hz, 1H), 4.40 (s, 2H), 4.29 (ddd, J = 13.2, 8.0, 0.8 Hz, 1H), 4.19 (ddd, J = 13.2, 4.0, 1.6 Hz, 1H), 3.03 (d, J = 11.2 Hz, 1H), 2.73-2.84 (m, 2H), 2.44 (s, 3H), 1.82 (dtd, J = 12.0, 6.8, 4.8 Hz, 1H), 1.64-1.72 (m, 2H), 1.42-1.52 (m, 1H), 0.89 (s, 9H), 0.86 (s, 9H), 0.08 (s, 3H), 0.07 (s, 3H), 0.06 (s, 3H), 0.05 (s, 3H); 13 C NMR (100 MHz, CDCl₃) δ 174.1, 147.8, 145.4, 135.2, 129.8, 128.9, 125.6, 72.2, 61.5, 42.6, 39.2, 35.3, 29.5, 26.2, 26.1, 21.9, 18.6, 18.1, -3.8, -4.5, -4.8, -4.9; HRMS (CI) m/z (M-H)⁻ calcd for ⁺ $[C_{28}H_{50}N_2O_5SSi_2-H]^2$ 581.2901, found 581.2900.

N-(2-(3-hydroxy-2-(2-hydroxyethylidene)cyclopentyl)acetyl)-4-met hylbenzenesulfonohydrazide (24)

A mixture of 23 (3.6 g, 6.25 mmol) in acetic acid (20 mL), H₂O (20 mL), and THF (20 mL) was stirred for 15 h at room temperature and HO ÓН concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (elution with dichloromethane/methanol = 20/1) to give 24 (1.73 g, 78%) as colorless amorphous. 24a: IR (neat) 3370, 2955, 2871, 1696, 1595, 1354, 1171 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.89 (dt, J = 8.4, 1.8 Hz, 2H), 7.34 (d, J = 8.4 Hz, 2H), 5.53 (tt, J = 6.6, 1.8 Hz, 1H), 4.71-4.78 (m, 1H), 4.48 (s, 2H), 4.25 (ddd, J = 12.6, 6.9, 1.2 Hz, 1H), 4.08 (dd, J = 12.0, 6.6 Hz, 1H), 3.08 (dd, J = 16.2, 5.4)Hz, 1H), 2.87 (dd, J = 15.9, 7.2 Hz, 1H), 2.74-2.86 (m, 1H), 2.45 (s, 3H), 1.55-1.90 (m, 4H); ¹³C NMR (75 MHz, CDCl₃) δ 173.8, 152.2, 145.4, 134.7, 129.6, 128.8, 124.2, 71.7, 59.8, 40.2, 39.5, 34.1, 29.3, 21.7; HRMS (CI) m/z (M-H)⁺ calcd for ⁺ $[C_{16}H_{22}N_2O_5S-H]^+$ 353.1178., found 353.1180. **24b**: IR (neat) 3362, 2957, 2871, 1695, 1359, 1170 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.89 (dt, J = 8.4, 1.8 Hz, 2H), 7.34 (d, J = 8.4 Hz, 2H), 5.54 (tt, J = 6.3, 2.1 Hz, 1H), 4.74-4.83 (m, 1H), 4.43 (s, 2H), 4.26 (ddd, J = 13.2, 6.3, 1.5 Hz, 1H), 4.16 (dd, J = 13.2, 6.3 Hz, 1H), 2.98-3.10 (m, 1H), 2.93(dd, J = 15.9, 5.7 Hz, 1H), 2.76 (br s, 1H), 2.62 (dd, J = 15.9, 8.1 Hz, 1H), 2.45 (s, 3H),1.95-2.15 (m, 2H), 1.69 (br, s, 1H), 1.53-1.70 (m, 1H), 1.16-1.32 (m, 1H); ¹³C NMR (75) MHz, CDCl₃) δ 173.5, 152.0, 145.4, 134.7, 129.6, 128.7, 123.9, 72.0, 59.8, 40.2, 39.3, 33.8, 29.4, 21.7; HRMS (CI) m/z (M-H)⁻ calcd for $[C_{16}H_{22}N_2O_5S-H]^-$ 353.1178., found 353.1189.

7-hydroxy-2-tosyl-7a-vinylhexahydro-1*H*-cyclopenta[*c*]pyridazin-3 (2*H*)-one (25)

To a solution of 24 (507 mg, 1.43 mmol) in nitromethane (14.3 mL) ¹⁸ H_{p} O_{H} was added Hg(OTf)₂ (0.29 mL, 0.1 M solution in acetonitrile) at room temperature. The mixture was stirred for 20 min, quenched with triethylamine (10 mL), and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (elution with hexane/ethyl acetate = 1/1) to give 25 α (136 mg, 28%) as colorless crystals and 25 β (270 mg, 56%) as colorless amorphous. 25 α ; mp 166 °C (from dichloromethane-diethyl ether); IR (neat) 3492, 3294, 2958, 1715,

1360, 1173 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, J = 8.4 Hz, 2H), 7.32 (d, J =8.4 Hz, 2H), 5.98 (dd, J = 17.6, 10.8 Hz, 1H), 5.28 (d, J = 17.6 Hz, 1H); 5.25 (d, J =10.8 Hz, 1H), 4.85 (s, 1H), 4.08 (q, J = 6.8 Hz, 1H), 2.81 (d, J = 6.8 Hz, 1H), 2.52-2.61 (m, 2H), 2.49 (dd, J = 15.6, 9.2 Hz, 1H), 2.44 (s, 3H), 1.97-2.08 (m, 1H), 1.93 (dtd, J =13.6, 7.6, 5.6 Hz, 1H), 1.82 (ddt, J = 13.6, 8.0, 5.6 Hz, 1H), 1.63 (dtd, J = 12.4, 7.6, 5.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 172.0, 145.2, 140.0, 135.2, 129.5, 128.9, 117.0, 78.4, 70.2, 39.3, 32.9, 30.9, 28.3, 21.7; HRMS (CI) m/z (M+H)⁺ calcd for $[C_{16}H_{20}N_2O_4S+H]^+$ 337.1222, found 337.1220. **25** β ; IR (neat) 3483, 3282, 2961, 1714, 1359, 1179 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.95 (d, J = 8.1 Hz, 2H), 7.33 (d, J =8.1 Hz, 2H), 5.97 (dd, J = 17.7, 11.1 Hz, 1H), 5.37 (d, J = 11.1 Hz, 1H); 5.32 (d, J = 11.1 Hz, 1H 17.7 Hz, 1H), 4.48 (s, 1H), 4.05-4.32 (m, 1H), 2.66 (tdd, J = 8.7, 8.7, 6.3, 4.5 Hz, 1H), 2.55 (dd, J = 15.3, 6.3 Hz, 1H), 2.44 (s, 3H), 2.37 (dd, J = 15.3, 4.5 Hz, 1H), 2.32-2.43 (m, 1H), 1.88-2.03 (m, 2H), 1.51 (dddd, J = 12.0, 12.0, 10.2, 6.6 Hz, 1H), 1.19-1.32 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 171.9, 145.2, 137.3, 134.9, 129.4, 128.8, 117.6, 76.9, 70.4, 40.2, 38.0, 30.9, 27.2, 21.7; HRMS (CI) $m/z (M+H)^+$ calcd for $[C_{16}H_{20}N_2O_4S+H]^+$ 337.1222, found 337.1213.

2-tosyl-7a-vinyltetrahydro-1*H*-cyclopenta[*c*]pyridazine-3,7(2*H*,7a*H*)

To a solution of the mixture of **25a** and **25β** (499 mg, 1.48 mmol) in dichrolometane (10 mL) was added DMSO (5 mL, 70.6 mmol), triethylamine (1.24 mL, 8.91 mmol), and a solution of SO₃•Pyr (591 mg, 3.71 mmol) successively at 0 °C. The mixture was stirred for 1 h at room temperature, quenched with sat. NH₄Cl, extracted with dichloromethane (20 mL x 3). The combined organic layers were washed with brine, dried over anhydrous MgSO4, filtered, concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (elution with hexane/ethyl acetate = 2/1 to 1/1) to give **26** (494 mg, quant.) as colorless amorphous; IR (neat) 3289, 2958, 2254, 1747, 1368, 1175 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.85 (d, *J* = 8.4 Hz, 2H), 7.28 (d, *J* = 8.4 Hz, 2H), 5.81 (dd, *J* = 17.4, 10.5 Hz, 1H), 5.45 (d, *J* = 17.4 Hz, 1H); 5.32 (d, *J* = 10.5 Hz, 1H), 5.28 (s, 1H), 2.83 (tt, *J* = 7.8, 5.4 Hz, 1H), 2.65 (dd, *J* = 15.0, 5.4 Hz, 1H), 2.48 (dd, *J* = 15.0, 8.1 Hz, 1H), 2.42 (s, 3H), 2.32-2.45 (m 1H), 2.12-2.34 (m, 2H), 1.45-1.59 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 213.6, 171.1, 145.1, 134.7, 134.6, 129.2, 128.9, 118.6, 70.5, 39.0, 37.3, 35.5, 24.0, 21.6; HRMS (CI) m/z (M)⁺ calcd for [C₁₆H₁₈N₂O₄S]⁺ 334.0987, found 333.0989.

2-tosyl-7a-vinyl-4,4a-dihydro-1*H*-cyclopenta[*c*]pyridazine-3,7(2*H*, 7a*H*)-dione (28) $T_{s} \sim N_{N} \sim 1$

A solution of 26 (385 mg, 1.15 mmol) and HMDS (0.48 mL, 2.3

mmol) in dichloromethane (12 mL) was stirred for 30 min at room temperature. To the mixture was added Trimethylsilyliodide (0.25 mL, 1.70 mmol) at 0 °C. The mixture was stirred for 1 h at 0 °C, stirrerd for 15 min. at room temperature, guenched with sat. NaHCO₃, extracted with dichloromethane (20 mL x 2). The combined organic layers were dried over anhydrous MgSO₄, filtered, concentrated under reduced pressure. To a solution of reside in DMSO (12 mL) was added Pd(OAc)₂ (258 mg, 1.15 mmol) was added at room temperature. The mixture was stirred for 4 h, quenched with H₂O, extracted with ethyl acetate. The combined organic layers were washed with brine, dried over anhydrous MgSO₄, filtered, concentrated under reduced pressure. The residue was purified by flash columnchromatography on silica gel (elution with hexane/ethyl acetate = 2/3) to give 28 (298 mg, 78% from 26) as white solid. mp 182 °C (from dichloromethane-diethyl ether); IR (neat) 3243, 2924, 1715, 1354, 1167 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, J = 8.4 Hz, 2H), 7.50 (dd, J = 6.0, 2.8 Hz, 1H), 7.30 (d, J= 8.4 Hz, 2H), 6.09 (dd, J = 6.0, 2.0 Hz, 1H), 5.89 (dd, J = 17.6, 10.8 Hz, 1H), 5.47 (d, 2.0 Hz, 1H), 2.94 (dd, J = 14.4, 6.8 Hz, 1H), 2.55 (dd, J = 14.4, 4.8 Hz, 1H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 204.6, 168.3, 163.4, 145.5, 134.6, 134.4, 133.2, 129.4, 129.3, 119.6, 68.1, 46.4, 36.2, 21.8; HRMS (CI) m/z (M+H)⁺ calcd for $[C_{16}H_{16}N_2O_4S+H]^+$ 333.0909, found 333.0904.

6-(hydroxymethyl)-2-tosyl-7a-vinyl-4,4a-dihydro-1*H*-cyclopent a[*c*]pyridazine-3,7(2*H*,7a*H*)-dione (29)

To a solution of 28 (289 mg, 0.87 mmol) in THF (9 mL) was

added formaldehyde (0.35 mL, 4.34 mmol, 37% water solution) and *n*-tributhylphosphine (87 μ L, 0.35 mmol) at room temperature. The mixture was stirred

for 2 h, quenched with H₂O, extracted with ethyl acetate (x 3). The combined organic layers were dried over anhydrous MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (elution with hexane/ethyl acetate = 1/4) to give **29** (289 mg, 92%) as colorless amorphous; IR (neat) 3460, 3208, 2979, 2595, 1709, 1357 cm⁻¹; ¹H NMR (300 MHz, CD₃OD) δ 7.71 (d, *J* = 8.4 Hz, 2H), 7.36 (dt, *J* = 2.7, 1.8 Hz, 1H), 7.27 (d, *J* = 8.4 Hz, 2H), 5.78 (dd, *J* = 17.4, 10.8 Hz, 1H), 5.37 (d, *J* = 17.4 Hz, 1H), 5.22 (d, *J* = 10.8 Hz, 1H), 4.00 (dt, *J* = 15.3, 1.8 Hz, 1H), 3.83 (br d, *J* = 15.3 Hz, 1H), 3.40-3.47 (m, 1H), 2.89 (dd, *J* = 15.3, 7.2 Hz, 1H), 2.45 (dd, *J* = 15.3, 3.6 Hz, 1H), 2.33 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 204.9, 172.7, 159.6, 148.1, 147.0, 137.1, 135.5, 130.7, 130.4, 119.4, 71.2, 57.5, 46.1, 37.1, 21.9; HRMS (CI) m/z (M+H)⁺ calcd for [C₁₇H₁₈N₂O₅S+H]⁺ 363.1014, found 363.1008

7-hydroxy-6-(hydroxymethyl)-5-(nitromethyl)-2-tosyl-7a-vinyl hexahydro-1*H*-cyclopenta[*c*]pyridazin-3(2*H*)-one (31)

To a solution of 29 (229 mg, 0.63 mmol) in nitromethane (12.6

mL) was added tetramethylguanidine (33 µL, 0.27 mmol) at 0 °C. The mixture was stirred for 3.5 h, guenched with sat. 1 M HCl, and extracted with ethyl acetate (30 mL x 3). The combined organic layers were washed with sat. NaHCO₃ and brine, dried over anhydrous MgSO₄, filtered, and concentrated under reduced pressure to give crude **30**. The solution of crude **30** in methanol (5 mL) was added a solution of NaBH₄ (19.0 mg, 0.5 mmol) in methanol (1.3 mL) at -78 °C. The mixture was stirred for 30 min, quenched with sat. NH₄Cl, and extracted with ethyl acetate (20 mL x 3). The combined organic layers were dried over anhydrous MgSO₄, filtered, concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (elution with dichloromethane/methanol = 20/1) to give **31** (132 mg, 49% from **29**) as colorless amorphous. IR (neat) 3487, 3289, 2922, 2253, 1715, 1550, 1361, 1169 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, J = 8.4 Hz, 2H), 7.31 (d, J = 8.4 Hz, 2H), 5.97 (dd, J = 17.6, 10.8 Hz, 1H), 5.33 (d, J = 10.8 Hz, 1H), 5.25 (d, J = 17.6 Hz, 1H), 5.03 (s, J = 17.6 Hz, 10.6 Hz, 100 Hz, 11H), 4.62 (dd, J = 12.4, 4.0 Hz, 1H), 4.43 (dd, J = 12.4, 7.2 Hz, 1H), 4.08 (d, J = 10.8Hz, 1H), 3.96 (br s, 1H), 3.82 (br d, J = 9.2 Hz, 1H), 3.76 (br d, J = 9.2 Hz, 1H), 3.30 (br s, 1H), 2.52-2.65 (m, 2H), 2.49 (dd, J = 16.8, 8.0 Hz, 1H), 2.42 (s, 3H), 2.18-2.32 (m, 1H), 1.65-1.76 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 171.3, 145.8, 136.6, 134.4, 129.6, 129.0, 118.7, 76.6, 75.4, 69.4, 59.5, 46.6, 42.2, 39.3, 36.8, 21.7; HRMS (CI) m/z (M+H)⁺ calcd for [C₁₈H₂₃N₃O₇S+H]⁺ 426.1335, found 426.1338.

6-(azidomethyl)-7-hydroxy-5-(nitromethyl)-2-tosyl-7a-vinylhexa hydro-1*H*-cyclopenta[*c*]pyridazin-3(2*H*)-one (32)

To a solution of **31** (22.4 mg, 0.053 mmol) in pyridine (0.27 mL) was added methanesufonylchloride (9.0 mg, 0.079 mmol) at 0 °C.

The mixture was stirred for 45 min at room temperature, quenched with sat. NaHCO₃, and extracted with ethyl acetate (20 mL x 2). The combined organic layers were dried over anhydrous MgSO₄, filtered, and concentrated under reduced pressure. The residue was filtered through silica gel pad (elution with dichloromethane/methanol = 9/1) and concentrated under reduced pressure. The solution of residue in DMF (0.57 mL) was added sodium azide (7.2 mg, 0.11 mmol) at room temperature. The mixture was heated to 60 °C for 3 h, diluted with ethyl acetate (5 mL), filtered, and washed with sat. NaHCO₃. The aqueous layer was extracted with ethyl acetate (20 mL x 3). The combined organic layers were dried over anhydrous MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography of silica gel (elution with hexane/ethyl acetate = 1/1) to give 32 (16 mg, 67% from 31) as colorless crystal. mp 151 °C (from dichloromethane-diethyl ether); IR (neat) 3489, 3289, 2924, 2104, 1715, 1555, 1366, 1276, 1174cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.94 (d, J = 8.1 Hz, 2H), 7.35 (d, J = 8.1 Hz, 2H), 5.96 (dd, J = 17.4, 11.1 Hz, 1H), 5.43 (d, J = 17.4, 5.44 (d, J = 17.4, 5.44 (d, J = 17.4, 5.44 (d, J = 17.4, 5. 11.1 Hz, 1H), 5.33 (d, J = 17.4 Hz, 1H), 4.66 (s, 1H), 4.58 (dd, J = 12.3, 4.2 Hz, 1H), 4.41 (dd, J = 12.3, 6.6 Hz, 1H), 3.85 (d, J = 10.8 Hz, 1H), 3.63 (dd, J = 12.9, 3.3 Hz, 1H), 3.54 (dd, J = 12.9, 5.1 Hz, 1H), 2.57-2.69 (m, 2H), 2.45 (s, 3H), 2.42-2.48 (m, 1H), 1.95-2.10 (m, 1H), 1.74 (tdd, J = 11.4, 5.1, 3.6 Hz, 1H); 13 C NMR (100 MHz, CDCl₃) δ 170.5, 145.8, 135.8, 134.4, 129.6, 129.0, 118.8, 75.9, 75.1, 68.7, 49.5, 43.7, 42.1, 40.2, 36.3, 21.8; HRMS (CI) m/z (M+H)⁺ calcd for $[C_{18}H_{22}N_6O_6S+H]^+$ 451.1400, found 451.1403.

KPa-189-up-up-pure-IH

exp4 Proton

	SAMPI	E		SPECIAL					
date	Oct	1 E	2008	t en	ព្រ	DO.	εı	used	
salver	1Ľ	c	dc13	gai	n	no	εı	uaed	
file			exp	spi	n			16	
ACQ	nuun	tor	ĩ	hst	hst				
9W		64	10.3	pv3	0		12	. 500	
at		3	.500	alf	a		10	.000	
пр		4	4872		F	LAGS			
fb			4000	έI				п	
bs			4	in				5	
d1		1	.500	$d\mathbf{p}$				Ŷ	
nt		I	2000	hs				nn	
ct			20		PROG	CESSII	łG		
TRA	NSMIT	TER		ĒΠ		not	: :	ised	
ta			Hl		DIS	PLAY			
sfrq		399	.814	sp		-	-19	9.9	
tof		3	99.5	νp		з	59	8.1	
tpwr			59	rf1			79	15.2	
pw		6	.250	rfp				0	
DE	COUPL	ΞR		rp			7	4.1	
đn			C13	lp				1.8	
dof			0		P	LOT			
dn			nnn	WC				370	
dam			¢	sc				0	
dpwr			37	VВ				225	
dmf		2	9412	th				12	
				ai	cdc	ph			

. .

0

ppm

4

4

3

2

KWa-199 up-up-pure-13C

exp5 Carbon

1 1 1 1 1 1 1 1 1 1

	SAMP	LΕ		SPECIAL				
date	Cet	31	2008	tem	P	во	t	useó
solven	ť	0	dcl3	gai	n	no	t	used
file.			exõ	spi	Α.			16
ACQ	UTET!	CI 02	ā.	hst			¢	.009
зv		248	509.B	pw9	0		13	8.200
at		1	.300	alf	a		10	5.000
ap		e	3750		FI	AGS		
fb		1	7600	11				п
bs			16	in				5
d1		C	.700	₫p				ÿ
Δt		3	0000	hs				ne
et			192		PROC	ESST	đ	;
tra	NSMIT	TEF	2	15				1.00
tn			C13	fn		noi	с	used
sfrq		100	.543		DIS	PLAY		
tof		10	42.7	зp		- :	17	23.1
tpwr			56	wp		24	15	09.I
₽₩		6	.600	rf1		Ś	14	67.9
DE	COUDI	ER		rfp		5	77	44.0
dn			H1	гp		-	- 1	10.2
dof			0	lp				15.2
da:			YYY		Ę	LOL		
dæn			W	WC				370
dpwr			41	sc				0
dnf		1	0200	V2				1309
				th				10
				ai	cdc	ph		

HO TBSO-

Ô

S18

٠.

ppm

.

Pulse Sequence: s2pul

Solvent: CDC13 Ambient temperature File: KPa-373-down-13C-102008_23_24 INOVA-600 "NMR"

Fulse 54.2 degrees Acq. time 1.815 sec Width 18761.7 Hz 288 repetitions OBSERVE C13, 75.4279239 MHz DECOUPLE H1, 299.9730594 MHz Power 39 dB continuously on WALTZ-16 modulated DATA PROCESSING Line broadening 2.0 Hz FT size 131072 Total time 151 hr, 59 min, 22 sec

· · · ·

13C OBSERVE

Pulse Sequence: s2pul

Mercury-300 "m300"

Solvent: CDC13 Ambient temperature

PULSE SEQUENCE Relax. delay 0.294 sec Pulse 40.0 degrees Acq. time 1.705 sec . Width 18863.2 Hz 464 repetitions OBSERVE C13, 75.4839403 MHz DECOUPLE H1, 300.1958432 MHz Power 36 dB continuously on WALTZ-15 modulated DATA PROCESSING Line broadening 1.0 Hz FT size 65536

150

Total time 15 minutes

20

40

0

ppm

60

80

100

120

140

13C OBSERVE

Pulse Sequence: s2pul

Solvent: CDCl3 Ambient temperature Nercury-300 "m300"

FULSE SEQUENCE Relax. delay 0.294 sec Pulse 40.0 degrees Acq. time 1.705 sec Width 18663.2 Hz 280 repetitions OBSERVE C13, 75.4839403 MHz DECOUPLE HL, 300.1958432 MHz Power 38 dB continuously on WALTZ-16 modulated DATA PROCESSING Line broadening 1.0 Hz PT mize 65536 Total time 9 minutes

KPa-380 (up) -pure-1H

exp6 Proton

8

7

6

	SAMPL	Ξ		SPI	SCLAI		
date	Nav	1 2008	tem	P	Щ¢	۶¢	use
solve	nt	cdcl3	gai	n	no	,t	use
file.		exp	api	п.			1
AC	QUISIT	ION	hst				0.00
5w		6410.3	pw9	0		1:	2.50
at		3,500	alf	a		1(0.00
np		44872		FI	AGS		
£Ъ		4000	11				1
bs		4	in				1
đI		1.500	dp				3
nt		12000	hs				n
ct		32		PROC	ESSI	N	3
TRA	NSWIT	TER	fn		nc	t	usea
ta		Ħ1		DIS	PLAY		
sfrq		399.814	ap			-2	200.
tof		399.5	wp			35	. 84
tpwr		59	rfl			1	80.
pw		6.250	rfp				1
DE	COUPL	ER	τp				74.
dn		C13	lp				15.
dof		0		F	LOT		
dm		nnn	WC				370
dan		c	8¢				(
dpwr		37	VВ				1312
da f		29412	th				13
			ai	cđc	ph		

۲,

0

ppm

S25

3

2

1

4

ġ,

5

EFa-380 (up) -pure-13C

exp7 Carbon

180

160

140

	SAMPL	Ξ		SPE	CIAL	
date	Nov	1 2008	tem	P	not	used
scives	at	cdcl3	gai	1	not	used:
file		exp	spi;	n		16
AC	JUISIT	ION	hst.			0.008
SN.		24509.8	pw9	0	3	13.200
at		1.300	alf	a	3	10.000
np		63750		FI	AGS	
fb		17000	i 1			n
bs		16	in			n
d1		0.700	dp			У
nt		30000	hs			nn
ct		192		PROC	ESSIN	IG
TRI	ANSMIT	TER	lb			1.00
tn		C13	fn		not	used:
sfrq		100.543		DIS	PLAY	
tof		1042.7	sp		- 1	005.8
tpwr		56	wp		20	106.4
рw		6.600	rfl		9	464.9
DI	COUPL	ER	rfp		7	744.0
đn		81	rp		-	119.4
đọf		0	lp			10.1
dm.		YYY		F	LOT	
dmin		w	WC			370
dpwr		41	80			0
dmf		10200	V5			2096
			th			8
			ai	cdc	ph	

		*		L	
	l			4	
					1

			ļ			
					,	
	ŀ					
	1				ł	
				- 1		
			- í			

.... -1--1-1 1 1 1 1 1

100

a'

120

S26⁸⁰

-

60

40

20

r

制成制度

ppm

0

KPa-379 (down) -1E

exp4	Proton
------	--------

	SAMPL	E	SPECIAL						
date	Nov	1 2009	tez	p	80	t used			
solven	t	cdcl3	gai	n	по	t used			
file		qxe	api	n		16			
ACO	UISIT	ION	hat	ast 0.0					
ew.		6410.3	ры э	0		12.500			
at		3.500	alt	a		10.000			
ъp		44872		FI	AGS				
fb		4000	±1			π			
bs		4	άħ			n			
d1		1,500	dp			У			
at		12000	hs			nn			
ct		20		PROC	Tesi	NG			
TRA	TIMEN	TER	fn		no	t used			
tn		H1		DIS	PLAY				
sfrq		399.814	sр			-199.9			
tof		399.5	₩₽		:	3598,1			
tpwr		59	rfl			803.8			
pw		6.250	rfp			0			
DEC	CORDER	ER	rp			72.7			
dn		C13	lp			1.6			
dof		0		P	LOT				
dm		nnn	УЯC			370			
dan		c	ac			0			
dpwr		37	vs			1022			
dmf		29412	th			12			
			ai	cdc	ph				

HO

TBSO-

Ó

14

ŌTBS

KFa-379 (down) -13C

exp5 Carbon

180

160

140

120

	SAMPL	E		SPECIAL
date	Nov	1 2008	ten	p not used
solver	ъ.	cdc13	gai	n not useđ
fila		exp.	spt	n. 16
ACC	UISIT	TON	hst	0.008
8W		24509.8	pw9	0 13.200
at		1.300	alf	a 16.000
пр		63750		FLAGS
fb		17000	11	л
bs		16	in	n
đl		0.700	dp	У
nt		30000	Ъs	nn
ct.		208		PROCESSING
TRA	NSMIT	TER	lb	1.00
tn		C13	fn	not used
sfrq		100.543		DISPLAY
tof		1042.7	sp	-1005.8
tpwr		56	wp	20106.4
P W		6,600	rfl	9464.9
DE	COUPL	ER	rfp	7744.0
dn		Hl	$\mathbf{r}\mathbf{p}$	-119.6
do f		· 0	lp	21.4
dan 🛛		YYY		PLOT
dan		w	WC	370
dpwr		41	sc	0
dmf		10200	vs	1967
			th	8
			e 1	ada mb

HO \cap TBSO-ŌTBS 14

60

40

20

0

ppm

				.				
								1
						1		
		Į						
							•	
						i		1

shirtshim and strange **计保留性的保留性的**。 -

100

പ്രഹിവണം പിവണ

earr9 Carbo

	SAMPL	É	SPECIAL					
date	Sav	7 2008	temp	not used				
sciver	t	cdcl3	gain	not used				
Et Le		earp.	apin	- 16				
ACC	ULELT	ION	hst	0.008				
8w		24509.8	2w 90	13.200				
at		1.300	alfa	10.000				
др		63750		FLAGE				
fb		17000	±Ϊ	π				
ba		16	in	n				
d1.		0.700	dp	Ŷ				
nt		30000	Ъs	n				
ct.		272		PROCESSING				
TRA	NSMIT:	rer	IЬ	1.00				
ᄪ		C13	fn	not used				
sfrq	:	100.543		DISPLAY				
tof		1042.7	ap	-1005.8				
tpwr		56	wp	20106.4				
₽₩		6.600	₹ £1	9465.7				
DE	COULT	SR.	rfp	7744.0				
đa		Hi	rp	-135.2				
dof		0	.1p	62.5				
dm		ууу		PLOT				
dam		W	WC	370				
dpwr		41	se	0				
dmf.		10200	va	3682				
			th	11				
				- A				

鼣 S30 ppm

ppm

RFa 195 up-down

Carbon ero7

	SAMPI	Е	SPECIAL					
đate	Nov	7 2008	tea	τp	nc	nt usa		
solven	t.	cdcl3	gai	n	nc	t use		
file		exp	spi	.p.		1		
ACQ	UISIT	TON	bst			0.00		
2N		24509.8	pws	0		13.20		
at		1.300	alt	a		10.00		
пр		63750		\mathbf{F}_{i}^{i}	LAGS			
fb		17000	±Ι					
ba		16	tn					
d1		0.700	đp					
nt		30000	hs			Π		
ct		0		PRO	TESSI	NG		
IRA	NSMIT	TER	1Ь			1.0		
tu		C13	fn		по	t use		
sfrq		100.543		DIS	SPLAY			
tof		1042.7	зp		-	1005.		
tpwr		56	wp		2	0106.		
рw		5.600	rfl			1699.		
DEG	COUPL	ER	rfp					
da		Ħl	rp			~119.		
dof		0	lp			24.		
đn,		ууу		I	LOT			
duam		w	ЖC			37		
dpwr		41	sc					
dmf		10200	vs			623		
			th			1		
			ai	cđc	ph			

40

20

 H_2N

TBSO-

ÖTBS

23b

0

ppm

.

KPa-up-major-C

exp7	stdl3c		
	SAMPLE	DEC.	& VT
date	Nov 11 2008	dfrq	299.973
solve	nt CDC13	dn	H1
file	exp	dpwr	39
AC	QUISITION	dof	0
sfrq	75.435	dan	YYY
tn	C13	daan	w
at	1.815	dmf	11000
np	68106	PROC	ESSING
sw	18761.7	1b	2.00
fb	10400	wtfile	
bs	16	proc	ft
tpwr	57	fn	not used
pw	8.7		
d1	0	werr	
tof	0	wexp	wft
nt	100000	wbs	wft
ct	2208	wnt	
alock	n		
gain	not used		
	FLAGS		
i 1	n		
in	n		
dp	· y	5 C	
I	DISPLAY		
sp	21.6		
wp	15053.0		
vs	143		
sc	o		
WC	370		
hzmm	40.68		
is	500.00		
rfl	7659.7		
rfp	5810.2		
th	10		
ins	100.000		
nm nc	ph		

Ts

H₂N-N

wanter and the approximation of the second and the

SPA 185 13C

expl. Carbon

	EMPLE		SPECIAL
ದೆ ಸ ಓಕ್	Mary 15 2008	teap	nat used
sciven	t cdc13	gain	not used
file.	exp	spin.	. 16.
ACQ	ULSITION	hst	0.008
5W	24509.8	pw90	13.200
at.	1.300	alfa	10.000
ab.	63750		FLAGS
fb	17000	tΙ	n
bs	16	tn	n
d1_	0.700	đp	У
nt:	30000	hs	nn
ct	896	1	ROCESSING
TEA	NSMITTER	lb	1.00
th:	C13	fn	not used
sirq	100.543		DISPLAY
tof	1042.7	ap	-50_7
tpwr:	. 56	₩P	20105.4
PW	6.600	rfl	9466.4
DE9	COUPLER	rźp	7744.0
dir	81	rp	-130.9
dof	- 0	1p	34.7
<u>द्रोप</u>	YYY		PLOT
dinai	w	WC	370
dpwr-	41	sc	0
dmf	1.0200	78	5983
		th	12
		- 4	

40

20

ppm

端認識能 HOUSE CHANNELS AT T 180 160 140 120 100

S36

80

60

KPa-360-up-1H-pure

expl Fraton

	SPI		. <u>к</u>	SAMPL	
not used	्यम्	be	4 2008	Oct	date
not used	*in	ga	cdcl3	at	salver
16	nin.	s	ex		file.
0.008	st	hs	ION	DISIT	ACC
12.500	r90	P¥	6410.3		ew.
10.000	fa	al	3.500		at
AGS .	FI		44872		пр
п		ίI	4000		fb
מ	1	in	4		ba
У	,	đp	1.500		d1
an	;	hs	12000		nt
SSING	FROC		40		ct
not used	L	ťo	TRANSMITTER		
LAY	DIS		H1		tn '
-40.1	,	sb	399.814	2	sfrq
1998.0		٧P	399.5		tof
804.8	1	rf	59		tpwr
0	Þ	rf	6.250		2W
75.8		$_{rp}$	ZR.	COUPLE	DE
5.0		1p	C13		đn
ot.	P		a		iof
370		WC	nnn		dm.
Ð		80	C		11010
459		¥5	37		lpwr
10		th	29412		inf
12	-	~ 1			

۰ و

....

S37

, ,

ррш

KPa-360-up-13C-pure

exp4 Carbon

SAMPLE			SPECIAL					
date	Oct	4 20	68	tem	P	n	ot	use
solver	at	cđe	13	gai	n	D.	ot	úse
file		e	хp	api	n			1
ACK	DIST	ION		hat				0.00
ew.		24509	. 8	Pw3	0		13	3.20
at		1.3	00	alf	a		10	00.0
np		637	50		F	LAGS		
fb		170	00	i1				
bs			16	ìn				;
d1		0.7	00	dp				2
nt		300	00	<u>bs</u>				n
et		143	52		PRO	Ess:	ENC	7
TRE	NSMIT	TER		15				1.0
tn		с	13	fn		n	эĿ.	used
sfrg		100.5	43		DIS	SPLAY	ž	
tof		1042	.7	sp			-4	17.1
tpwr		1	56	₩p		1	185	17.1
₽₩		6.6	00	rfl			94	64.
DE	COUPL	ER .		rfp			77	44.(
đn		1	81	\mathbf{rp}			-1	.08.1
dof			0	lp			-	29.6
dn		У	YY		I	LOL		
dmm			٧	WC				370
dpwr			41	sc				(
dmf		102	90	VS			3	336(
				th				10
				ai	cđc	ph		

13C OBSERVE

Pulse Seguence: s2pul

Solvent: CDCl3 Ambient temperature Mercury-300 "m300"

PULSE SEQUENCE Relax. delay 0.294 sec Pulse 40.0 degrees Acq. time 1.705 sec Width 18863.2 Hz 608 repetitions OBSERVE C13, 75.4639462 MHz ORCOUPLE HJ, 300.1958432 MHz Power 38 dB continuously on WALTZ-16 modulated DATA PROCESSING Line broadening 1.0 Hz FT size 65536 Total time 20 minutes

Pulse Sequence: s2pul

Solvent: CDC13 Ambient temperature Mercury-300 "m300* FULSE SEQUENCE Relax. delay 0.500 sec Fulse 31.3 degrees Acq. time 3.555 sec Width 4500.5 Hz 64 repetitions OSSERVE H. 300.1543863 MHz DATA PROCESSING FT size 32768 Total time 4 minutes

÷.

~

exp2 Proton

	SAMPL	£		SP	ECTAL	
đate	Oct	3 2008	ten	p	no	t used
solver	rt	cdcl3	gai	n	no	t used
file		exp	spi.	n		16
ACÇ	UISIT	ION	hat			0.008
sw		6410.3	pw9	0	:	12.500
at		3.500	alf	a	:	10.000
ap		44972		Ŧ	LAGE	
fb		4000	11			n
ba		4	in			n
d1		1.500	dp			Y
nt		12000	hs			nn
ct		28		PRO	CESSI	NG
TRE	NSMIT	TER	fn		not	L used
tn		H1		DI;	SPLAY	
afrq		399.814	ap			-40.1
tof		399.5	wp		3	1998.0
tpwr		59	rfl			804.0
PW		6.250	rfp			0
DE	COUPL	ER	rp			75.8
dn		C13	lp			3.5
dof	•	0	12	1	LOT	
dm.		nnn	WC			370
dmm		c	8C			0
dpwr		37	vs			220
dnf		29412	th			12
			ai	cđe	рh	

9

8

7

3

4

5

S44

6

2

ppm

.

· - .

I

KPa-363-13C-enone

expl Carbon

	SAMPT	æ		SP	ECLAL	
date	Oct	3 2008	ten	P	not	used
salver		cdcl3	gai	n	not	used
file		exp	spi	n		16
ACO	UTSIT	TON	hat			800.0
aw		24509.8	وwg	0	I	3.200
at		1.300	alf	a	I	0.000
np		63750		F	LAGE	
fb		17000	ίI			п
bs		16	in			n
d1		0,700	dp			У
nt		300000	hs			nn
ct		3056		PROC	CESSIN	G
TRA	NSMIT	TER	15			1.00
tn		C13	fn		not	used
sfrq		100.543		DIS	IPLAY	
tof		1042.7	ap		-	392.5
tpwr		56	wp		22	514.9
₽₩		6.600	rfl		9-	465.7
DE	COUPP	ER	ríp		7	744.0
dn		#1	$\mathbf{r}\mathbf{p}$		-:	131.1
dof		0	1p			28.2
dm		ууу	12	Ę	LOT	
dmm		W	WC			370
dpwr		41	sc			0
dmf		10200	vs			6881
			th			7
			a1	cde	n h	

200

180

1

ppm

20

÷

40

r

60

					4 .[
						بو د
					1 1	
						,
				ji i	.	
And the second second for the second	Burger Barthan and bet son Barnets Balan une worked	History & Hylgoldwinn	at the other of the relation of the Astronomy in the second second in the second in the second in the second in the	Water deresting to die name al and the same to a sec	the second s	
└ <u>────────────────────────────────────</u>	┈╸╴╴┲╴┲╴┲╴┰╴┲╴┲╴╸╸	· · · · · · · · · · · · · · · · · · ·				

<u>╷╎╷┲╖╴┲╺╋╍┲╌┲╶┥╶┝╺╸┲╼┲</u>╌┨╶╷

80

100 S45

120

a,

11

160

1.1.1.1

140

STANDARD 1H OBSERVE

exp1 std1h

S	AMPLE	DEC.	& VT
date s	Sep 21 2008	dfrq	299.974
solvent	methanol	dn	H1
file	ехр	dpwr	. 30
ACQU:	ESITION	dof	٥
sfrq	299.974	dm	nnn
tn	H1	đmm	c
at	4.000	dmf	200
np	36036	PROC	ESSING
sw	4504.5	wtfile	
fb	2600	proc	ft
bs	4	fn	not used
tpwr	63		
рw	4.0	werr	
d 1	1.000	wexp	wft
tof	0	wbs	w£t
nt .	100000	wrat.	
ct	72		
alock	n		
gain	not used		
FI	AGS		
il	n		
in	n		
dp	У		
DIS	PLAY		
sp	419.9		
wp	2249,8		
vs	203		
sc	0		
WC	370		
hzmm	6.08		
is	1200.58		
rfl	2771.5		
rfp	1433.9		
th	20		
ins	100.000		
nm cdc	ph		

8

7

6

3

à,

ppm

2

4

1

S46

5

Pulse Sequence: s2pul

Solvent: methanol Ambient temperature File: KPa-354-13C-092208_02_43 INOVA-600 "NMR"

Fulse 54.2 degrees Acq. time 1.815 sec Width 18761.7 Hz 11237 repetitions OBSERVE C13, 75.4280880 MHz DECOUPLE H1, 299.9737314 MHz Power 39 dB continuously on WALTZ-16 modulated DATA PROCESSING Line broadening 2.0 Hz FT size 131072 Total time 50 hr, 39 min, 47 sec

KPa-366-1H-pure

expl Proton

	SAMPLE		SPECTAL	
date	Oct 11 2009	temo	not used	
solver	E cdcl3	gain	not used	
file	ехр	spin	16	
\$CQ3	ICSTTION .	hat	0.008	
2W	6410.3	pw90	12.500	
at	3.500	alfa	10.000	
np	44872		FLAGS	
fb	4000	11	ń	
bs	4	in	n	
d1	1.500	dp	Y	
nt	12000	hs	дn	
GL	72	P.	ROCESSING	
L MAD	SMITTER	In	not used	
stro	200 014 HI		DISPLAY	
tof	300 6	900 1000	-40.1	
towr	59	wp wf1	3998.0	1
DW	6.250	rfn	803.0	
DEC	OUPLER	rn	177 1	
dn	C13	lp	,,.,	
dof	0	~	PLOT	
dm	· חחת	WC	370	
dmm	c	8C	0	
dpwr	37	VS	904	
dnf	29412	th	12	
		ai cd	c ph	
				1
				1
		-		
				f
				- 1
			1	
			h	11
			ł	01

, ,

ppm

a,

S48

KEa-366-13C-pure

Carbor

開

180

	sample		SPECTAL
dæte	Oct 11 2008	tea	10 not seed
sciven	t cdcl3	aa:	in not used
file.	exp.	. 50	tn. 15
ACQ	UISITION	hat	t 0.000
SW	24509.8	DW9	10 13.200
at	1.300	ali	a 10.000
цЪ	63750		FLACE
fb	17000	ίI	п
bs	16	1.n	n
d1	0.700	dp	v
nt	300000	hв	1
ct.	608		PROCESSING
TRAL	ISMITTER	IЬ	1.00
ta	C13	fn	not used
afrq	100.543		DISPLAY
tof	1042.7	\mathbf{sp}	-395.2
tpwr	56	wp	19500.6
рw	6.600	rfl	9465.7
DEC	OUPLER	rfp	7744.0
άπ	Hl	$\mathbf{r}\mathbf{p}$	-123.7
dof	. 0	lp	30.5
-Cimi	ууу		PLOT
dmm	¥	WC	370
dpwr	41	8C	0
ant	10200	va	7718
		th	21
		-	ad

۲

ppm

40

20

Pulse Sequence: s2pul

Solvent: CDC13 Ambient temperature File: KPa-403-pure-1H-112608_23_51 INOVA-600 "NMR"

Relax. delay 0.500 sec Pulse 31.3 degrees Acq. time 3.555 sec Width 4500.5 Hz 268 repetitions OBSERVE H1, 300.1943971 MHz DATA PROCESSING FT size 32768 Total time 11 hr, 17 min, 20 sec

KPa-403-43C

exp4 Carbon

1	SAMPLE	SP	ECIAL
date	Nov 22 2008	temp	not used
solvent	cdcl3	gain	not used
file	exp	apin	16
VCO I	USITION	hat	800.0
8W	24509.8	pw90	13.200
at	1.300	alfa	10.000
np	63750	F	LAGS
fb	17000	11	а
Ьs	16	in	n
d1	0.700	dp	У
nt	30000	hs	nn
et	1104	PRO	CESSING
TRAN	SMITTER	15	. 1.00
tn	C13	fn	not used
sfrq	100.543	DI.	SPLAY
tof	1042.7	sp	-50.7
tpwr	56	wp	20106.4
pw	6.600	rfl	9467.2
DEC	OUPLER	rfp	7744.0
dn	H1.	rp	-94.9
dof	0	lp	-20.9
dn	YYY	. 1	PLOT
dmm	w	WC.	370
dpwr	41	sc	0
dinf	10200	VS	6084
		th	. 19
		ai cdc	ph

KPa-390 (up-middle) -mix-iH

9

8

7

\$

ppm

I....

S52

4

3

2

5

.

6

KE3-190(up-middle) -mix-130

exp3	Carbon
------	--------

勒淵和

PLE .	SPECIAL			
7 12 2008	temp	not used		
cdc13	gain	not used		
extp	spin.	16		
TTION	hst	0_008		
24509.8	pw90	13.200		
1.300	alfa	10.000		
63750	F	LARS		
17600	±1	π		
1.6	in	n		
0.700	đp	У		
30000	hs	an		
1056	PRO	CESSING		
TTER	1b	1.00		
C13	fn	not used		
100.543	DI	SPLAY		
1042.7	ap	-50.7		
56	₩₽	20106.4		
6.600	rfl	9467.2		
LER	ríp	7744.0		
Hl	rp	-123.7		
. 0	1p	33.5		
ууу	.1	PLOT		
W	WC.	370		
41	8C	٥		
10200	¥3	6834		
	th	9		
	ai cdc	ph		
	₹725 cdc13 cd	FIE SP cdc13 gain 1300 alf 63750 F 17000 fl 0.700 dp 30000 hs 10556 PRO C13 fn 100.543 DE 56 MP 6.600 rfl rLER rfp 0 lp yyyy l w wc 41 10200 vs th ai< cdc		

.

÷.

~			3		· ·				· · · · ·
				- - 					;
torrelation and the sectors of	sadatkooninteshormatah	altransfer species the last	to V constances view	transistance in sheet of the star	harter and the second second	物的行用者的	naan aharan karan kar	n unadaranan ana ana	
180	160	140	120	100 S53	80	60	40	20	bbw

~

-

Table 1. Crystal data and structure refinement for p	<i>b</i> 2.	
Identification code	p2	
Empirical formula	C16 H20 N2 O4 S	
Formula weight	336.40	
Temperature	296 K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P2(1)/c	
Unit cell dimensions	a = 15.677(5) Å	α= 90°.
	b = 8.062(3) Å	$\beta = 99.968(4)^{\circ}.$
	c = 12.985(4) Å	$\gamma = 90^{\circ}$.
Volume	1616.3(9) Å ³	
Z	4	
Density (calculated)	1.382 Mg/m ³	
Absorption coefficient	0.222 mm ⁻¹	
F(000)	712	
Crystal size	$0.43 \ x \ 0.25 \ x \ 0.23 \ mm^3$	
Theta range for data collection	1.32 to 27.55°.	
Index ranges	-20<=h<=9, -10<=k<=10, -16	<=l<=16
Reflections collected	7922	
Independent reflections	3654 [R(int) = 0.0632]	
Completeness to theta = 27.55°	97.6 %	
Absorption correction	None	
Refinement method	Full-matrix least-squares on F ²	!
Data / restraints / parameters	3654 / 0 / 211	
Goodness-of-fit on F ²	1.053	
Final R indices [I>2sigma(I)]	R1 = 0.0875, wR2 = 0.2392	
R indices (all data)	R1 = 0.0897, wR2 = 0.2436	
Extinction coefficient	0.002(4)	
Largest diff. peak and hole	0.932 and -0.872 $e.\ensuremath{\text{Å}}^{\text{-3}}$	

Table 2. Atomic coordinates ($x \ 10^4)$ and equivalent isotropic displacement parameters (Å $^2x \ 10^3)$

for p2. U(eq) is defined as one third of the trace of the orthogonalized $U^{ij}\,\text{tensor.}$

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
C(2)3985(2)5770(3)789(2)24(1)C(3)3350(1)6960(3)1215(2)18(1)C(4)3041(2)6321(3)2199(2)23(1)C(5)2502(2)7638(3)2602(2)20(1)C(6)3849(1)8638(2)1451(2)15(1)C(7)4808(1)8168(3)1459(2)20(1)C(8)4734(2)6876(3)587(2)25(1)C(9)3583(2)9993(3)656(2)23(1)C(10)1512(1)11258(3)2108(2)17(1)C(11)709(2)10696(3)2294(2)21(1)C(12)-26(2)11071(3)1565(2)24(1)	
C(3)3350(1)6960(3)1215(2)18(1)C(4)3041(2)6321(3)2199(2)23(1)C(5)2502(2)7638(3)2602(2)20(1)C(6)3849(1)8638(2)1451(2)15(1)C(7)4808(1)8168(3)1459(2)20(1)C(8)4734(2)6876(3)587(2)25(1)C(9)3583(2)9993(3)656(2)23(1)C(10)1512(1)11258(3)2108(2)17(1)C(11)709(2)10696(3)2294(2)21(1)C(12)-26(2)11071(3)1565(2)24(1)	
C(4)3041(2)6321(3)2199(2)23(1)C(5)2502(2)7638(3)2602(2)20(1)C(6)3849(1)8638(2)1451(2)15(1)C(7)4808(1)8168(3)1459(2)20(1)C(8)4734(2)6876(3)587(2)25(1)C(9)3583(2)9993(3)656(2)23(1)C(10)1512(1)11258(3)2108(2)17(1)C(11)709(2)10696(3)2294(2)21(1)C(12)-26(2)11071(3)1565(2)24(1)	
C(5)2502(2)7638(3)2602(2)20(1)C(6)3849(1)8638(2)1451(2)15(1)C(7)4808(1)8168(3)1459(2)20(1)C(8)4734(2)6876(3)587(2)25(1)C(9)3583(2)9993(3)656(2)23(1)C(10)1512(1)11258(3)2108(2)17(1)C(11)709(2)10696(3)2294(2)21(1)C(12)-26(2)11071(3)1565(2)24(1)	
C(6)3849(1)8638(2)1451(2)15(1)C(7)4808(1)8168(3)1459(2)20(1)C(8)4734(2)6876(3)587(2)25(1)C(9)3583(2)9993(3)656(2)23(1)C(10)1512(1)11258(3)2108(2)17(1)C(11)709(2)10696(3)2294(2)21(1)C(12)-26(2)11071(3)1565(2)24(1)	
C(7)4808(1)8168(3)1459(2)20(1)C(8)4734(2)6876(3)587(2)25(1)C(9)3583(2)9993(3)656(2)23(1)C(10)1512(1)11258(3)2108(2)17(1)C(11)709(2)10696(3)2294(2)21(1)C(12)-26(2)11071(3)1565(2)24(1)	
C(8)4734(2)6876(3)587(2)25(1)C(9)3583(2)9993(3)656(2)23(1)C(10)1512(1)11258(3)2108(2)17(1)C(11)709(2)10696(3)2294(2)21(1)C(12)-26(2)11071(3)1565(2)24(1)	
C(9)3583(2)9993(3)656(2)23(1)C(10)1512(1)11258(3)2108(2)17(1)C(11)709(2)10696(3)2294(2)21(1)C(12)-26(2)11071(3)1565(2)24(1)	
C(10) 1512(1) 11258(3) 2108(2) 17(1) C(11) 709(2) 10696(3) 2294(2) 21(1) C(12) -26(2) 11071(3) 1565(2) 24(1)	
C(11) 709(2) 10696(3) 2294(2) 21(1) C(12) -26(2) 11071(3) 1565(2) 24(1)	
C(12) -26(2) 11071(3) 1565(2) 24(1)	
C(13) 34(2) 11997(3) 669(2) 23(1)	
C(14) 846(2) 12517(3) 498(2) 24(1)	
C(15) 1593(2) 12165(3) 1219(2) 21(1)	
C(16) -776(2) 12413(3) -102(2) 31(1)	
O(1) 5128(1) 7430(2) 2451(1) 23(1)	
O(2) 1776(1) 7476(2) 2795(2) 27(1)	
N(1) 2927(1) 9172(2) 2705(2) 16(1)	
N(2) 3781(1) 9313(2) 2495(1) 14(1)	
O(3) 2184(1) 10601(3) 4043(1) 27(1)	

O(4)	3061(1)	12211(2)	2972(1)	24(1)		
C(17)	2982(2)	9926(4)	-184(2)	37(1)		
					Table 3.	Bond lengths [Å] and angles [°] for p2.
		(10)				
S(1)-O(3)	1.431	6(18)				
S(1)-O(4)	1.440	3(17)				
S(1)-N(1)	1.699	5(19)				
S(1)-C(10)	1.759	(2)				
C(2)-C(8)	1.532	(4)				
C(2)-C(3)	1.552	(3)				
C(3)-C(4)	1.532	(3)				
C(3)-C(6)	1.567	(3)				
C(4)-C(5)	1.505	(3)				
C(5)-O(2)	1.215	(3)				
C(5)-N(1)	1.400	(3)				
C(6)-N(2)	1.481	(3)				
C(6)-C(9)	1.511	(3)				
C(6)-C(7)	1.549	(3)				
C(7)-O(1)	1.429	(3)				
C(7)-C(8)	1.528	(3)				
C(9)-C(17)	1.314	(4)				
C(10)-C(15)	1.391	(3)				
C(10)-C(11)	1.397	(3)				
C(11)-C(12)	1 391	(3)				
C(12)-C(13)	1 400	(3)				
C(12) = C(14)	1 393	(4)				
C(13)- $C(16)$	1.533	(3)				
C(14)-C(15)	1.313	(3)				
N(1) N(2)	1.357	(3)				
14(1)-14(2)	1.417	(5)				
O(3)-S(1)-O(4)	119.72(1	11)				
O(3)-S(1)-N(1)	107.47(1	10)				
O(4)-S(1)-N(1)	103.91(1	10)				
O(3)-S(1)-C(10)	109.03(1	11)				
O(4)-S(1)-C(10)	108.79(1	11)				
N(1)-S(1)-C(10)	107.18(1	10)				
C(8)-C(2)-C(3)	105.02(1	18)				
C(4)- $C(3)$ - $C(2)$	113 85(1	18)				
C(4)-C(3)-C(6)	110.00(1	17)				
C(2)- $C(3)$ - $C(6)$	105.90(1	18)				
C(5)- $C(4)$ - $C(3)$	109.28(1	17)				
O(2) C(5) N(1)	121 5(2)	\ \				
O(2) - C(5) - O(1)	121.5(2)					
N(1) C(5) C(4)	111 76(1	, 10)				
N(1)-C(3)-C(4)	107.74(1	17)				
N(2)- $C(6)$ - $C(7)$	107.74(1	17)				
N(2)-C(0)-C(7)	107.95(1	10)				
C(9)-C(6)-C(7)	109.50(1	17)				
N(2)-C(6)-C(3)	112.57(1	16)				
C(9)- $C(0)$ - $C(3)$	114.87(1	10)				
C(7)-C(6)-C(3)	103.98(1	10)				
O(1)-C(7)-C(8)	110.75(1	19)				
U(1)-C(7)-C(6)	107.22(1	1/)				
C(8)-C(7)-C(6)	102.25(1	F7)				
C(7)-C(8)-C(2)	103.45(1	18)				
C(17)-C(9)-C(6)	127.7(2))				
C(15)-C(10)-C(11)	121.9(2))				

nic	displ	lacement	parameters	$(Å^2x)$	103)
pie	uispi	lucoment	parameters	(11	10	/

for p2.

	х	у	Z	U(eq)
H(2)	4191	4917	1298	29
H(2B)	3705	5243	147	29
H(3)	2844	7146	667	21
H(4A)	2698	5323	2035	27
H(4B)	3536	6050	2730	27

S(1)	16(1)	16(1)	20(1)	-5(1)	3(1)	2(1)
C(2)	22(1)	18(1)	30(1)	-11(1)	1(1)	3(1)
C(3)	19(1)	12(1)	21(1)	-3(1)	-1(1)	0(1)
C(4)	24(1)	9(1)	36(1)	2(1)	7(1)	-1(1)
C(5)	20(1)	13(1)	26(1)	5(1)	5(1)	1(1)
C(6)	17(1)	12(1)	16(1)	-1(1)	4(1)	0(1)
C(7)	17(1)	19(1)	23(1)	-5(1)	5(1)	0(1)
C(8)	24(1)	26(1)	26(1)	-9(1)	6(1)	5(1)
C(9)	30(1)	16(1)	26(1)	6(1)	10(1)	4(1)
C(10)	15(1)	14(1)	20(1)	-3(1)	1(1)	3(1)
C(11)	19(1)	21(1)	22(1)	-1(1)	6(1)	2(1)
C(12)	17(1)	27(1)	27(1)	-2(1)	4(1)	4(1)
C(13)	23(1)	17(1)	27(1)	-4(1)	1(1)	7(1)
C(14)	28(1)	19(1)	25(1)	3(1)	6(1)	5(1)
C(15)	22(1)	14(1)	28(1)	-1(1)	7(1)	1(1)
C(16)	26(1)	33(1)	30(1)	-3(1)	-4(1)	10(1)
O(1)	18(1)	24(1)	26(1)	-4(1)	0(1)	9(1)
O(2)	22(1)	19(1)	42(1)	5(1)	11(1)	-3(1)
N(1)	16(1)	12(1)	22(1)	1(1)	6(1)	0(1)
N(2)	12(1)	15(1)	17(1)	-2(1)	3(1)	0(1)
O(3)	23(1)	39(1)	19(1)	-5(1)	4(1)	8(1)
O(4)	18(1)	16(1)	38(1)	-10(1)	3(1)	0(1)
C(17)	48(2)	39(2)	24(1)	14(1)	4(1)	6(1)

 $\label{eq:ansatz} Table~4. \ \ Anisotropic displacement parameters~({\rm \AA}^2 x~10^3) for~p2. \ The anisotropic displacement factor exponent takes the form: -2\pi^2 [~h^2a^{*2}U^{11}+...+2~h~k~a^*~b^*~U^{12}~]$

U³³

 U^{23}

 U^{12}

 U^{13}

C(15)-C(10)-S(1)	118.63(17)
C(11)-C(10)-S(1)	119.41(17)
C(12)-C(11)-C(10)	118.5(2)
C(11)-C(12)-C(13)	121.0(2)
C(14)-C(13)-C(12)	119.2(2)
C(14)-C(13)-C(16)	120.9(2)
C(12)-C(13)-C(16)	119.9(2)
C(13)-C(14)-C(15)	121.0(2)
C(10)-C(15)-C(14)	118.5(2)
C(5)-N(1)-N(2)	120.11(17)
C(5)-N(1)-S(1)	122.06(16)
N(2)-N(1)-S(1)	117.82(14)
N(1)-N(2)-C(6)	111.50(16)

Symmetry transformations used to generate equivalent atoms:

 U^{22}

 U^{11}

____Table 5. Hydrogen coordinates (x 10⁴) and isotro

H(7)	5156	9127	1319	24
H(8A)	5265	6243	631	30
H(8B)	4602	7396	-96	30
H(9)	3880	10992	776	28
H(11)	667	10085	2890	25
H(12)	-564	10702	1676	28
H(14)	890	13107	-106	29
H(15)	2133	12529	1108	25
H(16A)	-1073	11408	-344	46
H(16B)	-621	13002	-685	46
H(16C)	-1149	13094	234	46
H(1)	5572	6911	2417	35
H(2A)	4207	9737	2920	17
H(17A)	2663	8958	-344	45
H(17B)	2874	10846	-619	45

Table 1. Crystal data and structure refinement	for Kpa403 .	
Identification code	Kpa403	
Empirical formula	C18 H22 N6 O6 S	
Formula weight	450.48	
Temperature	296 K	
Wavelength	0.71073	
Crystal system	Monoclinic	
Space group	P2(1)/c	
Unit cell dimensions	a = 13.493(7)	α = 90
	b = 16.902(9)	β= 96.042(7)
	c = 9.145(5)	γ = 90
Volume	2074.0(18)	
Ζ	4	
Density (calculated)	1.443 Mg/m^3	
Absorption coefficient	0.205 mm^{-1}	
F(000)	944	
Crystal size	? x ? x ? mm ³	
Theta range for data collection	1.52 to 27.78	
Index ranges	-17<=h<=12, -21<=k<=21, -	11<=1<=11
Reflections collected	11416	
Independent reflections	4748 [R(int) = 0.0735]	
Completeness to theta = $27.78-$	96.9 %	
Absorption correction	Empirical	
Refinement method	Full-matrix least-squares on	F ²
Data / restraints / parameters	4748 / 0 / 287	
Goodness-of-fit on F ²	1.014	
Final R indices [I>2sigma(I)]	R1 = 0.0660, wR2 = 0.1686	
R indices (all data)	R1 = 0.0894, wR2 = 0.1858	
Extinction coefficient	0.0000(13)	
Largest diff. peak and hole	0.581 and -0.397 e	

	X	У	Z	U(eq)
S(1)	-1077(1)	1757(1)	3146(1)	27(1)
C(5)	1499(2)	532(1)	236(2)	26(1)
C(6)	2617(2)	685(2)	277(2)	30(1)
C(1)	502(2)	2587(1)	2303(2)	26(1)
C(7)	2723(2)	1575(2)	635(2)	29(1)
C(2)	1396(2)	2527(1)	1457(2)	28(1)
C(3)	1938(2)	1735(1)	1717(2)	28(1)
C(4)	1189(2)	1027(1)	1556(2)	26(1)
C(8)	3787(2)	1793(2)	1233(3)	38(1)
C(9)	1168(2)	511(2)	2909(2)	31(1)
C(10)	1761(2)	546(2)	4151(3)	42(1)
C(11)	3033(2)	428(2)	-1133(3)	34(1)
C(12)	-2014(2)	2331(2)	2174(2)	27(1)
C(13)	-2072(2)	3139(2)	2449(2)	31(1)
C(14)	-2766(2)	3586(2)	1594(3)	35(1)
C(15)	-3405(2)	3242(2)	465(3)	36(1)
C(16)	-3347(2)	2430(2)	237(3)	37(1)
C(17)	-2656(2)	1965(2)	1079(2)	31(1)
C(18)	-4104(3)	3748(2)	-532(3)	50(1)
O(1)	-1317(1)	940(1)	2977(2)	34(1)
O(2)	-813(1)	2094(1)	4567(2)	35(1)
O(3)	1301(2)	-285(1)	354(2)	32(1)
O(4)	4279(3)	2863(2)	2739(3)	81(1)
O(5)	3560(2)	3133(1)	614(3)	59(1)
N(1)	-65(2)	1899(1)	2215(2)	24(1)
N(2)	149(2)	1314(1)	1171(2)	24(1)
N(3)	3888(2)	2661(2)	1559(3)	42(1)
N(4)	4129(2)	373(2)	-789(3)	57(1)
N(5)	4632(2)	289(1)	-1805(2)	40(1)
N(6)	5205(2)	216(2)	-2619(3)	56(1)
O(6)	314(2)	3162(1)	3039(2)	32(1)

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($\frac{1}{2}$ x 10³) for p21. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

S(1)-O(1)	1.423(2)
S(1)-O(2)	1.4292(17)
S(1)-N(1)	1.700(2)
S(1)-C(12)	1.759(3)
C(5)–O(3)	1.412(3)
C(5)-C(6)	1.528(4)
C(5)-C(4)	1.561(3)
C(6)-C(11)	1.522(3)
C(6)-C(7)	1.543(3)
C(1)-O(6)	1.223(3)
C(1)-N(1)	1.389(3)
C(1)-C(2)	1.504(3)
C(7)-C(8)	1.528(4)
C(7)–C(3)	1.547(3)
C(2)-C(3)	1.533(3)
C(3)-C(4)	1.564(4)
C(4)-N(2)	1.491(3)
C(4)-C(9)	1.516(3)
C(8)-N(3)	1.500(4)
C(9)-C(10)	1.320(4)
C(11)-N(4)	1.482(4)
C(12)-C(13)	1.393(4)
C(12)-C(17)	1.398(3)
C(13)-C(14)	1.380(4)
C(14)-C(15)	1.400(4)
C(15)-C(16)	1.392(4)
C(15)-C(18)	1.507(4)
C(16)-C(17)	1.388(4)
O(4)-N(3)	1.200(3)
O(5)-N(3)	1.225(3)
N(1)-N(2)	1.426(3)
N(4)-N(5)	1.214(3)
N(5)-N(6)	1.135(3)
O(1)-S(1)-O(2)	121.13(10)
O(1)-S(1)-N(1)	105.57(10)

Table 3. Bond lengths [Å] and angles $[\circ]$ for p21.

O(2)-S(1)-N(1)	105.22(11)
O(1)-S(1)-C(12)	109.68(12)
O(2)-S(1)-C(12)	109.72(11)
N(1)-S(1)-C(12)	103.99(11)
O(3)-C(5)-C(6)	111.0(2)
O(3)-C(5)-C(4)	113.37(18)
C(6)-C(5)-C(4)	103.57(19)
C(5)-C(6)-C(11)	112.5(2)
C(5)-C(6)-C(7)	103.8(2)
C(11)-C(6)-C(7)	115.0(2)
O(6)-C(1)-N(1)	123.5(2)
O(6)-C(1)-C(2)	124.0(2)
N(1)-C(1)-C(2)	112.4(2)
C(8)-C(7)-C(6)	111.9(2)
C(8)–C(7)–C(3)	114.2(2)
C(6)-C(7)-C(3)	104.63(19)
C(1)-C(2)-C(3)	111.98(19)
C(2)-C(3)-C(7)	113.65(19)
C(2)-C(3)-C(4)	111.2(2)
C(7)-C(3)-C(4)	106.50(19)
N(2)-C(4)-C(9)	106.31(19)
N(2)-C(4)-C(5)	108.25(18)
C(9)-C(4)-C(5)	110.66(19)
N(2)-C(4)-C(3)	110.87(19)
C(9)-C(4)-C(3)	115.50(19)
C(5)-C(4)-C(3)	105.11(19)
N(3)-C(8)-C(7)	111.7(2)
C(10)-C(9)-C(4)	128.0(3)
N(4)-C(11)-C(6)	106.7(2)
C(13)-C(12)-C(17)	121.4(2)
C(13)-C(12)-S(1)	120.07(19)
C(17)–C(12)–S(1)	118.47(19)
C(14)-C(13)-C(12)	118.8(2)
C(13)-C(14)-C(15)	121.3(3)
C(16)-C(15)-C(14)	118.7(3)
C(16)-C(15)-C(18)	120.7(3)
C(14)-C(15)-C(18)	120.5(3)
C(17)-C(16)-C(15)	121.3(3)

C(16)-C(17)-C(12)	118.5(2)
C(1)-N(1)-N(2)	118.08(19)
C(1)-N(1)-S(1)	123.73(16)
N(2)-N(1)-S(1)	117.85(16)
N(1)-N(2)-C(4)	108.61(18)
O(4)-N(3)-O(5)	122.8(3)
O(4)-N(3)-C(8)	118.6(3)
O(5)-N(3)-C(8)	118.6(2)
N(5)-N(4)-C(11)	118.1(3)
N(6)-N(5)-N(4)	171.1(3)

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
S(1)	28(1)	41(1)	14(1)	1(1)	6(1)	0(1)
C(5)	28(1)	34(1)	18(1)	0(1)	4(1)	2(1)
C(6)	28(2)	38(1)	24(1)	2(1)	4(1)	3(1)
C(1)	28(1)	36(1)	14(1)	-1(1)	1(1)	-1(1)
C(7)	26(1)	40(1)	22(1)	2(1)	6(1)	1(1)
C(2)	28(1)	35(1)	20(1)	-3(1)	5(1)	-4(1)
C(3)	28(2)	41(1)	15(1)	-1(1)	1(1)	0(1)
C(4)	26(1)	36(1)	16(1)	2(1)	4(1)	2(1)
C(8)	28(2)	46(2)	41(2)	-1(1)	4(1)	2(1)
C(9)	35(2)	38(1)	20(1)	4(1)	5(1)	2(1)
C(10)	56(2)	48(2)	21(1)	6(1)	-2(1)	-5(1)
C(11)	30(2)	44(2)	29(1)	1(1)	8(1)	4(1)
C(12)	24(1)	42(1)	15(1)	2(1)	6(1)	0(1)
C(13)	28(2)	46(2)	20(1)	-4(1)	7(1)	-2(1)
C(14)	34(2)	42(2)	31(1)	-1(1)	12(1)	5(1)
C(15)	28(2)	56(2)	24(1)	3(1)	8(1)	5(1)
C(16)	28(2)	60(2)	23(1)	-2(1)	2(1)	0(1)
C(17)	27(2)	43(1)	23(1)	-2(1)	7(1)	-2(1)
C(18)	43(2)	73(2)	34(2)	6(1)	1(1)	16(2)
O(1)	35(1)	43(1)	24(1)	4(1)	9(1)	-1(1)
O(2)	32(1)	60(1)	13(1)	-1(1)	7(1)	1(1)
O(3)	37(1)	38(1)	22(1)	0(1)	1(1)	-2(1)
O(4)	112(3)	72(2)	54(2)	-16(1)	-9(2)	-11(2)
O(5)	42(2)	51(1)	80(2)	9(1)	-6(1)	-4(1)
N(1)	23(1)	36(1)	15(1)	-2(1)	7(1)	1(1)
N(2)	27(1)	33(1)	13(1)	-1(1)	4(1)	2(1)
N(3)	29(1)	52(2)	46(1)	-5(1)	9(1)	-4(1)
N(4)	36(2)	103(2)	33(1)	5(1)	11(1)	21(2)
N(5)	37(2)	53(2)	32(1)	-1(1)	6(1)	4(1)
N(6)	39(2)	89(2)	41(1)	-1(1)	14(1)	1(2)
O(6)	36(1)	41(1)	19(1)	-6(1)	7(1)	-2(1)

Table 4. Anisotropic displacement parameters (Å²x 10³) for p21. The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [$h^2a*^2U^{11} + ... + 2h k a* b* U^{12}$]

	X	У	Z	U(eq)
H(5)	1157	737	-685	32
H(6)	2959	385	1098	36
H(7)	2540	1877	-268	35
H(2A)	1853	2955	1750	33
H(2B)	1185	2587	416	33
H(3)	2276	1732	2720	34
H(8A)	3977	1495	2125	46
H(8B)	4238	1649	517	46
H(9)	676	124	2858	37
H(10A)	2266	922	4268	50
H(10B)	1673	194	4909	50
H(11A)	2760	-81	-1456	41
H(11B)	2865	812	-1907	41
H(13)	-1651	3374	3196	37
H(14)	-2811	4126	1771	42
H(16)	-3780	2194	-493	44
H(17)	-2621	1423	918	37
H(18A)	-4021	3630	-1539	75
H(18B)	-3956	4297	-340	75
H(18C)	-4779	3641	-352	75
H(3A)	942	-431	-376	48
H(3)	80(30)	1576(17)	300(40)	46(9)

Table 5. Hydrogen coordinates ($x\;10^4$) and isotropic displacement parameters (7 $^2x\;10^3$) for p21.

Table 6. Torsion angles [°] for p21.

.

