Supporting Text for "Pandemic dynamics and the breakdown of herd immunity"

Guy Katriel, Lewi Stone

1 Deriving characteristics of an epidemic from the SIR model

We derive analytic expressions for the attack rate A and for the duration D of an epidemic described by the SIR model

$$S' = -\beta IS,\tag{1}$$

$$I' = \beta I S - \gamma I, \tag{2}$$

$$R' = \gamma I. \tag{3}$$

with the conditions

$$S(-\infty) = S_0, \ I(-\infty) = 0, \ R(-\infty) = 1 - S_0.$$
 (4)

in terms of the parameters γ , $\mathcal{R}_0 = \frac{\beta}{\gamma}$, $\mathcal{R}_e = S_0 \mathcal{R}_0$.

Since A, D, and γ are approximately known (see assumptions (a)-(c) in the main text), these expressions enable us to estimate the parameters $\mathcal{R}_e, \mathcal{R}_0, S_0$.

1.1 The attack rate

The attack rate in the SIR model is given by the final size formula, which is well-known, see e.g. [1] and recalled for the reader's convenience. From (1),(15), we have so that

$$S(t) = S_0 e^{-\beta \int_{-\infty}^t I(s)ds}.$$
(5)

From (1),(2) we have

$$I'(t) + \gamma I(t) = -S'(t)$$

and integrating both sides, using (15), we have

$$I(t) + \gamma \int_{-\infty}^{t} I(s)ds = S_0 - S(t).$$
 (6)

Substituting (6) into (5) we have

$$S(t) = S_0 e^{-\mathcal{R}_0[S_0 - S(t) - I(t)]}.$$
(7)

Taking $t \to \infty$ we have

$$S(\infty) = S_0 e^{-\mathcal{R}_0[S_0 - S(\infty)]}$$

and setting

$$Z = 1 - \frac{S(\infty)}{S_0}$$
$$1 - Z = e^{-\mathcal{R}_e Z}.$$
 (8)

we rewrite

Note that Z is the fraction of susceptibles who get infected during the epidemic. Note that this fraction is determined by \mathcal{R}_e (we mention that, in the notation of [1], R_0 is what we here call \mathcal{R}_e). The attack rate (the fraction of the population who get infected during the epidemic) is

$$A = S_0 Z. (9)$$

Note also that, for given \mathcal{R}_0 , the fraction S_0 of susceptibles affects the attack rate A in two ways: first through its effect on \mathcal{R}_e and hence on Z, and secondly through the relation (9).

We can also write (8) in terms of A, as

$$1 - \frac{A}{S_0} = e^{-\mathcal{R}_0 A}.$$
 (10)

1.2 Duration of the epidemic

We must give a precise definition of what we mean by the "duration of the epidemic". We define the epidemic period $[t_1, t_2]$ by the following conditions

(1) %90 of the cases occur within this period, that is $S(t_1) - S(t_2) = 0.9A$,

(2)
$$I(t_1) = I(t_2).$$

The value $D = t_2 - t_1$ is called the duration of the epidemic.

There is some arbitrariness in the above definition. The value %90 can of course be replaced by a different fraction. In fact to be general we shall replace 0.9 by α in the derivations below, so that we have

$$S(t_1) - S(t_2) = \alpha A. \tag{11}$$

The condition $I(t_1) = I(t_2)$ could be replaced by the condition that the interval $[t_1, t_2]$ is centered at the peak of the epidemic (where the peak can be defined in at least two ways: as the time of the maximum of I(t), or as the time of the maximum of the incidence i(t) = -S'(t)). This would not change the duration by much in practice, and is less convenient analytically, and we therefore chose the definition above.

Lemma 1. The duration of an epidemic is given by

$$D = \frac{1}{\gamma} \int_{\frac{\alpha Z}{(1-Z)^{-\alpha}-1}}^{\frac{\alpha Z}{1-(1-Z)^{\alpha}}} \frac{1}{u} \frac{du}{\mathcal{R}_e(1-u) + \log(u)},$$
(12)

where Z is defined by (8).

An important consequence is that the duration of an epidemic depends only on γ and on \mathcal{R}_e .

Proof. From (7), and using $I(t_1) = I(t_2)$ and (11) we have

$$\frac{S(t_2)}{S(t_1)} = e^{-\mathcal{R}_0[S(t_1) - S(t_2) + I(t_2) - I(t_1)]} = e^{-\mathcal{R}_0[S(t_1) - S(t_2)]} = e^{-\alpha \mathcal{R}_0 A}$$
(13)

(11) and (13) provide us with two equations for $S(t_1), S(t_2)$ which can be solved to give

$$S(t_1) = \frac{\alpha A}{1 - e^{-\alpha \mathcal{R}_0 A}}, \quad S(t_2) = \frac{\alpha A}{e^{\alpha \mathcal{R}_0 A} - 1},$$

and using (10) we can rewrite this as

$$S(t_1) = \frac{\alpha A}{1 - (1 - \frac{A}{S_0})^{\alpha}}, \quad S(t_2) = \frac{\alpha A}{(1 - \frac{A}{S_0})^{-\alpha} - 1}.$$
 (14)

Solving (2) for I we have, fixing an arbitrary t_0 ,

$$I(t) = I(t_0) e^{-\gamma(t-t_0)} e^{\beta \int_{t_0}^t S(r) dr}.$$

Setting

$$x(t) = \log(S(t))$$

We have

$$x'(t) = \frac{S'(t)}{S(t)} = -\beta I(t) = -\beta I(t_0) e^{-\gamma(t-t_0)} e^{\beta \int_{t_0}^t S(r)dr}$$

and

$$x(t_0) = \log(S(t_0)), \ x'(t_0) = -\beta I(t_0).$$
 (15)

Therefore

$$x''(t) = \gamma \beta I(t_0) e^{-\gamma(t-t_0)} e^{\beta \int_{t_0}^t S(r)dr} - \beta^2 I(t_0) e^{-\gamma(t-t_0)} S(t) e^{\beta \int_{t_0}^t S(r)dr}$$
$$= -\gamma x'(t) + \beta e^{x(t)} x'(t)$$

 \mathbf{SO}

$$x'(t) = \beta e^{x(t)} - \gamma x(t) + C$$

where, using (15),

$$C = \gamma \log(S(t_0)) - \beta(I(t_0) + S(t_0)),$$

 \mathbf{SO}

$$x'(t) = \beta e^{x(t)} - \gamma x(t) + \gamma \log(S(t_0)) - \beta(I(t_0) + S(t_0)).$$

We note that x(t) is independent of the choice of t_0 , which shows that the expression $\gamma \log(S(t_0)) - \beta(I(t_0) + S(t_0))$ is independent of t_0 , and in particular we may send $t_0 \to -\infty$ and obtain

$$x'(t) = \beta e^{x(t)} - \gamma x(t) + \gamma \log(S_0) - \beta S_0$$
$$= \gamma [\mathcal{R}_0 e^{x(t)} - x(t) + \log(S_0) - \mathcal{R}_0 S_0].$$

Thus

$$\frac{1}{\gamma} \frac{x'(t)}{\mathcal{R}_0 e^{x(t)} - x(t) + \log(S_0) - \mathcal{R}_0 S_0} = 1,$$

and integrating from t_1 to t_2 we have

$$\frac{1}{\gamma} \int_{t_1}^{t_2} \frac{x'(t)dt}{\mathcal{R}_0 e^{x(t)} - x(t) + \log(S_0) - \mathcal{R}_0 S_0} = t_2 - t_1.$$

Making the substitution

$$S = e^{x(t)}, \quad dS = e^{x(t)}x'(t)dt$$

we get

$$\frac{1}{\gamma} \int_{S(t_1)}^{S(t_2)} \frac{1}{S} \frac{dS}{\log(\frac{S_0}{S}) - \mathcal{R}_0(S_0 - S)} = t_2 - t_1,$$

or, using (14),

$$D = t_2 - t_1 = \frac{1}{\gamma} \int_{\frac{\alpha A}{1 - (1 - \frac{A}{S_0})^{\alpha}}}^{\frac{\alpha A}{(1 - \frac{A}{S_0})^{-\alpha} - 1}} \frac{1}{S} \frac{dS}{\log(\frac{S_0}{S}) - \mathcal{R}_0(S_0 - S)}$$

Finally, making the substitution $S = S_0 u$ gives (12).

Using (12) we can calculate the duration of epidemics by numerical evaluation of the integral, with some results given in Table 1.

References

 Murray J.D. Mathematical Biology 1989 Springer-Verlag New York, pp767.