Appendix # MODEL EQUATIONS ## Diffusion of compounds in the extracellular space FGF dimerization and soluble HSPG binding with FGF monomer and dimer are considered. Compounds represented in the following equations are VEGF, FGF, soluble HSPG, complex of FGF with soluble HSPG, FGF dimer, and complex of FGF dimer with soluble HSPG. $$\frac{\partial V}{\partial t} = D_{v} \left(\frac{\partial^{2} V}{\partial x^{2}} + \frac{\partial^{2} V}{\partial y^{2}} \right)$$ $$\frac{\partial F}{\partial t} = D_F \left(\frac{\partial^2 F}{\partial x^2} + \frac{\partial^2 F}{\partial y^2} \right) - k_{onFh} F * h - k_{onF_2h} F h * F - k_{onF_2} F * F + k_{offFh} F h + 2 * k_{offF_2} F_2$$ $$\frac{\partial h}{\partial t} = D_h \left(\frac{\partial^2 h}{\partial x^2} + \frac{\partial^2 h}{\partial y^2} \right) - k_{onFh} F * h - k_{onF_2h} F_2 * h + k_{offFh} F h$$ $$\frac{\partial Fh}{\partial t} = D_{Fh} \left(\frac{\partial^2 Fh}{\partial x^2} + \frac{\partial^2 Fh}{\partial y^2} \right) + k_{onFh} F * h - k_{offFh} Fh - k_{onF_2h} Fh * F$$ $$\frac{\partial F_{2}}{\partial t} = D_{F_{2}} \left(\frac{\partial^{2} F_{2}}{\partial x^{2}} + \frac{\partial^{2} F_{2}}{\partial y^{2}} \right) + k_{onF_{2}} F * F - k_{offF_{2}} F_{2} - k_{on,F_{2}h} F_{2} * h$$ $$\frac{\partial F_2 h}{\partial t} = D_{F_2 h} \left(\frac{\partial^2 F_2 h}{\partial x^2} + \frac{\partial^2 F_2 h}{\partial y^2} \right) + k_{onF_2 h} F h * F + k_{onF_2 h} F_2 * h$$ ### Binding of FGF and VEGF to cell surface receptors $$-D_{V} \left. \frac{\partial V}{\partial y} \right|_{y=0} = k_{onVR} R_{V} *V - k_{offVR} B_{VR}$$ $$\begin{split} &-D_{F}\left.\frac{\partial F}{\partial y}\right|_{y=0} = k_{onFR}R_{F}*F + k_{onFH}F*H + k_{onFFHR}B_{FHR}*F + k_{onFFhR}B_{FhR}*F \\ &-k_{offFR}B_{FR} - k_{offFH}B_{FH} - k_{offFHR}B_{FHR} \\ &-D_{Fh}\left.\frac{\partial Fh}{\partial y}\right|_{y=0} = k_{onFhR}Fh *R_{F} - k_{offFhR}B_{FhR} \\ &-D_{F_{2}}\left.\frac{\partial F_{2}}{\partial y}\right|_{y=0} = k_{onF_{2}R}F_{2}*R_{F} + k_{onF_{2}H}F_{2}*H - k_{offF_{2}R}B_{F_{2}R} \\ &-D_{F_{2}h}\left.\frac{\partial F_{2}h}{\partial y}\right|_{y=0} = k_{onFFhR}F_{2}h*R_{F} \end{split}$$ #### Concentration change of complex on cell surface Various complexes are formed by binding of the compounds in the extracellular space with corresponding receptors, and HSPGs on cell-surface. $$\frac{\partial R_{V}}{\partial t} = S_{V} - k_{inVR} R_{VR} - k_{onVR} V * R_{V} + k_{offVR} B_{VR}$$ $$\frac{\partial B_{VR}}{\partial t} = S_{VR} - k_{inVR} B_{VR} + k_{onVR} V * R_V - k_{offVR} B_{VR}$$ $$\begin{split} &\frac{\partial R_{F}}{\partial t} = S_{F} - k_{inFR} R_{F} - k_{onFR} F * R_{F} - k_{onFhR} F h * R_{F} - k_{onFHR} B_{FH} * R_{F} - k_{onFFhR} B_{F_{2}h} * R_{F} \\ &- k_{onF_{2}R} F_{2} * R_{F} - k_{onFFHR} B_{F_{2}H} * R_{F} + k_{offFR} B_{FR} + k_{offFHR} B_{FHR} + k_{offF_{2}R} B_{FHR} + k_{offF_{2}R} B_{F_{2}R} \end{split}$$ $$\begin{split} \frac{\partial H}{\partial t} &= S_H - k_{inH} H - k_{onFH} F * H - k_{onFHR} B_{FR} * H - k_{onF_2H} F_2 * H - k_{onFFHR} B_{F_2R} * H \\ &+ k_{offFH} B_{FH} + k_{offFHR} B_{FHR} \end{split}$$ $$\frac{\partial B_{FR}}{\partial t} = -k_{inFR}B_{FR} + k_{onFR}F * R_F - k_{onFHR}B_{FR} * H - k_{offFR}B_{FR}$$ $$\frac{\partial B_{\mathit{FH}}}{\partial t} = -k_{\mathit{inFH}} B_{\mathit{FH}} + k_{\mathit{onFH}} F * H - k_{\mathit{onFHR}} B_{\mathit{FH}} * R_{\mathit{F}} - k_{\mathit{offFH}} B_{\mathit{FH}}$$ $$\frac{\partial B_{\mathit{FHR}}}{\partial t} = -k_{\mathit{inFHR}} B_{\mathit{FHR}} + k_{\mathit{onFHR}} B_{\mathit{FH}} * R_{\mathit{F}} + k_{\mathit{onFHR}} B_{\mathit{FR}} * H - k_{\mathit{offFHR}} B_{\mathit{FHR}} - k_{\mathit{onFFHR}} B_{\mathit{FHR}} * F$$ $$\frac{\partial B_{\mathit{FhR}}}{\partial t} = -k_{\mathit{inFhR}} B_{\mathit{FhR}} + k_{\mathit{onFhR}} B_{\mathit{Fh}} * R_{\mathit{F}} - k_{\mathit{offFhR}} B_{\mathit{FhR}} * H - k_{\mathit{onFFhR}} B_{\mathit{FhR}} * F$$ $$\frac{\partial B_{\mathit{FFHR}}}{\partial t} = -k_{\mathit{inFFHR}}B_{\mathit{FFHR}} + k_{\mathit{onFFHR}}B_{\mathit{FHR}} * F + k_{\mathit{onFFHR}}B_{\mathit{F_2H}} * R_{\mathit{F}} + k_{\mathit{onFFHR}}B_{\mathit{F_2R}} * H$$ $$\frac{\partial B_{\mathit{FFhR}}}{\partial t} = -k_{\mathit{inFFhR}} B_{\mathit{FFhR}} + k_{\mathit{onFFhR}} B_{\mathit{FhR}} * F + k_{\mathit{onFFhR}} B_{\mathit{F}_2\mathit{h}} * R_{\mathit{F}}$$ $$\frac{\partial B_{F_2R}}{\partial t} = -k_{inF_2R}B_{F_2R} + k_{onF_2R}F_2 * R_F - k_{offF_2R}B_{F_2R} - k_{onFFHR}B_{F_2R} * H$$ $$\frac{\partial B_{F_2H}}{\partial t} = -k_{inF_2H} B_{F_2H} + k_{onF_2H} F_2 * H - k_{onFFHR} B_{F_2H} * R_F$$ # Intracellular concentration change of calcium and IP₃ Calcium transport events include IP₃ generation, calcium uptake into the ER, influx and leak of calcium across cell plasma membrane. $$\frac{\partial I}{\partial t} = J_B + J_P - k_3 I + D_I \frac{\partial^2 I}{\partial x^2}$$ $$J_{B} = k_{1}(B_{VR} + B_{FR} + B_{FHR} + B_{FFHR} + B_{F_{2}R} + B_{FhR} + B_{FFhR}) * (\frac{C_{a}}{C_{a} + K_{1}})$$ $$J_{p} = k_{2} \frac{C_{a}^{2}}{K_{2}^{2} + C_{a}^{2}}$$ $$\frac{\partial C_a}{\partial t} = J_{REL} - J_{IER} + J_{IN} - J_{OUT} + D_C \frac{\partial^2 C_a}{\partial x^2}$$ $$J_{REL} = \left[k_4 + k_5 \frac{RC_a^2 I^2}{(K_5^2 + C_a^2)(K_i^2 + I^2)}\right](C_{ER} - C_a)$$ $$J_{IER} = k_6 C_a$$, $J_{IN} = k_7 + k_8 * \frac{I^2}{K_8^2 + I^2}$, $J_{OUT} = k_9 C_a$ $$\frac{\partial C_{ER}}{\partial t} = r(J_{IER} - J_{REL})$$ $$\frac{\partial R}{\partial t} = k_{10} \left[\frac{K_{10}^2}{K_{10}^2 + C_a^2} - R \right]$$ # Glossary B_{F2h} Concentration of FGF dimer-soluble HSPG on cell surface B_{F2H} Concentration of FGF dimer-HSPG B_{F2R} Concentration of FGF dimer-FGFR1 B_{FFhR} Concentration of FGF dimer-soluble HSPG-FGFR1 B_{FFHR} Concentration of FGF dimer-HSPG-FGFR1 B_{Fh} Concentration of FGF-soluble HSPG on cell surface B_{FH} Concentration of FGF-HSPG on cell surface B_{FhR} Concentration of FGF-soluble HSPG-FGFR1 B_{FHR} Concentration of FGF-HSPG-FGFR1 B_{FR} Concentration of FGF-FGFR1 B_{VR} Concentrations of VEGF-VEGFR2 C_a Concentrations of calcium in cytoplasm C_{ER} Concentrations of calcium in ER C_{ER0} The initial concentrations of calcium in ER D_F Diffusivity of FGF monomer D_{F2} Diffusivity of FGF dimer D_{F2h} Diffusivity of FGF dimer-soluble HSPG D_h Diffusivity of soluble HSPG D_{Fh} Diffusivity of FGF-soluble HSPG D_V Diffusivity of VEGF D_C Diffusivity of calcium D_I Diffusivity of IP₃ F Concentrations of FGF F_0 The initial concentrations of FGF F_2 Concentration of FGF dimer F_2h Concentration of FGF dimer-soluble HSPG Fh Concentration of FGF-soluble HSPG h Concentration of soluble HSPG h_0 The initial concentration of soluble HSPG H Concentration of cell-surface HSPG H_0 The initial concentration of cell-surface HSPG J_B The rate of IP₃ generation by cell-surface complexes through PLC γ J_{IER} Calcium pumping into the ER J_{IN} Calcium influx across the plasma membrane J_{OUT} Calcium extrusion J_P The rate of IP₃ generation by the positive feedback through PLC δ J_{REL} Calcium released from the ER k_1 IP₃ generation rate k_2 Maximal rate of PLC δ k_{inH} k_3 IP₃ degradation rate Rate of calcium leak from ER k_4 Rate constant of calcium release through IP₃R k_5 Rate constant of SERCA pump k_6 Rate of calcium leak across the plasma membrane k_7 Maximal rate of activation-dependent calcium influx k_8 Rate constant of calcium extrusion k_{9} Rate constant of IP₃R inactivation k_{10} Dissociation constant between calcium and PLCy K_1 K_2 Half-saturation constant for calcium activation of PLCδ K_5 Half-saturation constant for calcium activation of IP₃R K_i Half-saturation constant for IP₃ activation of IP₃R K_8 Half-saturation constant for agonist-dependent calcium entry K_{10} Half-saturation constant for calcium inhibition of IP₃R k_{inF} Internalization rate of FGFR1 Internalization rate of FGF-HSPG k_{inFH} Internalization rate of FGF-soluble HSPG-FGFR1 k_{inFhR} Internalization rate of FGF-HSPG-FGFR1 k_{inFHR} Internalization rate of FGF dimer-soluble HSPG-FGFR1 k_{inFFhR} Internalization rate of FGF dimer-HSPG-FGFR1 k_{inFFHR} Internalization rate of FGF dimer k_{inF2R} Internalization rate of FGF dimer-HSPG k_{inF2H} Internalization rate of HSPG k_{inV} Internalization rate of VEGF k_{inFR} Internalization rate of FGF-FGFR1 k_{inVR} Internalization rate of VEGF-VEGFR2 k_{offFR} Dissociation rate of FGF-FGFR1 k_{offF2} Dissociation rate of FGF dimer k_{offF2R} Dissociation rate of FGF dimer-FGFR1 k_{offFh} Dissociation rate of FGF -soluble HSPG k_{offFH} Dissociation rate of FGF-HSPG k_{offFhR} Dissociation rate of FGF-soluble HSPG-FGFR1 k_{offFHR} Dissociation rate of FGF-HSPG-FGFR1 k_{offVR} Dissociation rate of VEGF-VEGFR2 k_{onFR} Kinetic rate of FGF binding FGFR1 k_{onF2} Kinetic rate of FGF binding FGF k_{onF2R} Kinetic rate of FGF dimer binding FGFR1 k_{onF2h} Kinetic rate of FGF dimer binding soluble HSPG k_{onF2H} Kinetic rate of FGF dimer binding HSPG k_{onFh} Kinetic rate of FGF binding soluble HSPG k_{onFH} Kinetic rate of FGF binding HSPG *k*_{onFhR} Kinetic rate of FGF-soluble HSPG binding FGFR1 *k_{onFHR}* Kinetic rate of FGF-HSPG binding FGFR1 *k*_{onFFhR} Kinetic rate of FGF dimer-soluble HSPG binding FGFR1 k_{onFFHR} Kinetic rate of FGF dimer-HSPG binding FGFR1 k_{onV} Kinetic rate of VEGF binding VEGFR2 P_C Permeability of calcium to gap junctions P_I Permeability of IP₃ to gap junctions *r* Ratio of the volume between cytoplasmic and ER R Fraction of IP₃R R_F Concentrations of FGFR1 R_{F0} The initial concentration of FGFR1 R_V Concentrations of VEGFR2 R_{V0} The initial concentrations of VEGFR2 S_F Insertion rates of FGF S_H Insertion rates of HSPG S_V Insertion rates of VEGFR2 V Concentrations of VEGF V_0 The initial concentration of VEGF