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Mathematical Modeling
Here we discuss in detail the assumptions underlying the theo-
retical considerations presented in the main text. An effort is
made toward an untechnical, yet rigorous, treatment. First we
introduce our model, and then four specific points are discussed.

Presentation of the Model. We consider a membrane tube pulled
by optical tweezers and connected to a membrane tension res-
ervoir (the aspiration-controlled vesicle). The tube has a length L
and is partially covered by a possibly discontinuous coat of dy-
namin over a total length Ld. We neglect the transition regions
between bare and dynamin-covered sections of the tube. Taking
into account a force f externally applied on the tube (by the
optical tweezers), we write the free energy of the system as the
sum of the free energies of the two types of regions, plus the
work of the force:

F ¼ μbðL -LdÞ þ μdLd - fL; [S1]

where μb and μd stand for the free energy per unit length of the
bare region and the dynamin-covered region, respectively. For μb
we use the classic expression (1)

μb ¼
πκ
r
þ 2πrσ; [S2]

where κ is the bending modulus of the cylindrical membrane, r is
its radius, and σ is its surface tension. We consider timescales
that are large compared with the mechanical equilibration of the
tube and the equilibration of the lipids with the reservoir (≈1 s).
Therefore, we assume in all of the following that the bare sec-
tions minimize their free energy with respect to r and that σ is
equal to the value imposed by the reservoir. This yields

r ¼
ffiffiffiffiffi
κ
2σ

r
; μb ¼ 2π

ffiffiffiffiffiffiffiffi
2σκ

p
: [S3]

To construct the free energy of the dynamin-covered part, we
take into account the bending and tension energies of the
membrane as well as a dynamin-related term P. This term ac-
counts for the free energy difference between dynamin in sol-
ution and in the membrane-bound polymerized state. This
includes the following effects:

� The binding energy of a dynamin dimer to an already exist-
ing helix—this quantity might depend on the salinity of the
solution.

� The energy gain of dynamin upon binding the membrane,
and the change of the membrane energy upon dynamin
binding [e.g., insertion of dynamin’s hydrophobic loops into
the bilayer (2)]—this quantity depends on the chemical
composition of the membrane.

� The loss of entropy for leaving the solution and going into
the immobilized polymerized state—this quantity depends
on the concentration c of the dynamin solution.

� The elastic cost of deforming the helix away from its pre-
ferred radius—this quantity depends on the inner radius rd
of the dynamin helix.

The free energy per unit length of the dynamin-covered tube then
reads

μd ¼
πκ
rd

þ 2πrdσ−P ðc; rdÞ; [S4]

where P> 0 denotes a situation where dynamin dimers are more
stable in the polymerized state than in solution.
Throughout this work, we do not consider the dependence of P

on rd, and write PðcÞ. This assumption is justified theoretically in
SI Section 1, where we argue a priori that dynamin is so stiff that
the radius rd is not influenced by membrane tension. This makes
the rd dependence of P irrelevant. This point is demonstrated
experimentally in the main text. In SI Section 2, we prove that
thermodynamic stability implies that forming a dynamin helix is
only possible in a certain (c-dependent) range of membrane
tensions, which according to Eq. S3 can be translated into a
certain range of initial tubule radii. In SI Section 3, we show that
under mechanical and membrane equilibrium conditions, the
force exerted by the tube on the optical tweezers is fb = μb as
long as the tube is not fully covered by dynamin (Ld < L) and
drops to fd = μd when full coverage is achieved (Ld = L).

1. A Priori Argument for a Constant Dynamin Radius
We argue here that the radius of the dynamin helices described in
the main text does not depend on the tension of the membrane.
Electron microscopy data point in that direction, as they con-
sistently show that dynamin on soft membrane templates has a
radius in the vicinity of 10nm (3–6).However, one could argue that
all these references use floppy membrane templates and that the
higher membrane tensions used in our experiments might exert
stronger stresses on dynamin, therefore deforming it substantially.
The argument given here is a comparison of the elasticities of

the membrane and the dynamin helix. The elasticity of the
membrane is known to be well-described by its bending modulus
κ = 16.1 kBT (see main text). To our knowledge, the only data
available in the literature concerning the elasticity of dynamin
are a measurement of the persistence length of dynamin-covered
tubules performed in ref. 7, which yields ℓp = 37.3 ± 4.6 μm. We
recall that the persistence length is the length over which an
elastic filament is curved by the thermal fluctuations of the
surrounding medium. It therefore characterizes how difficult it is
to bend the filament (a stiff filament will have a large ℓp). It is
possible to use this value to evaluate the bending rigidity of the
dynamin coat. A detailed derivation of this bending stiffness for
a particular toy model of dynamin elasticity is proposed in ap-
pendix C of ref. 8 and commented on in section IV.B of the same
paper. Here we propose an order-of-magnitude argument lead-
ing to the same conclusions. We need to compare two quantities:

� On the one hand the elasticity of the dynamin helix, char-
acterized by the elastic constant kBTℓp ≈ 2 × 10−25 J.m,
which quantifies to what extent the dynamin coat wants to
be curved to its preferred radius rd, assuming the elastic
properties of the helix are reasonably isotropic.

� On the other hand the bending modulus κ of the membrane,
which quantifies how much the membrane wants to be flat.

Because the former is an energy × length and the latter an
energy, we need to introduce a characteristic length scale of the
system to compare them. The appropriate length is obviously the
radius of the tube rd ≈ 10−8 m. Therefore, we can define the
dimensionless ratio characterizing the relative stiffness of the
membrane and the helix:
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stiffness of the membrane
stiffness of the helix

≈
κ

kBTℓp=rd
≈ 3× 10− 3: [S5]

Because this ratio is much smaller than one, we conclude that
the influence of the elastic stresses exerted by the membrane on
the helix will be small, and therefore that the radius rd of the
dynamin coat will not be substantially influenced by the mem-
brane, justifying that we consider it constant throughout this
work. This assumption is verified experimentally in Fig. 2C,
where it is found that fd = μd depends linearly on σ, which ac-
cording to Eq. S4 shows that rd is constant.

2. Threshold Radii and Concentration Regimes
Here we present a thermodynamic criterion for the stability of the
dynamin polymer. At equilibrium, we expect that the tube will
either be dynamin-coated or bare depending on which situation
has the lowest free energy. Therefore, we expect that no nucle-
ation of dynamin oligomers will be observed if a bare tube is the
preferred state for a large system.
It is fairly obvious that the polymer stability criterion we are

looking for is μd < μb (for instance, one can consider whether
minimizing F with respect to Ld yields Ld = 0 or Ld = L). Using
Eq. S2 and S4, it is seen to be equivalent to

σ−
ffiffiffiffiffi
2κ

p

rd

ffiffiffi
σ

p þ
 

κ

2r2d
−

P
2πrd

!
< 0; [S6]

which with the help of Eq. S3 can be expressed as a condition on
the initial bare tube radius r:

1− 2
r
rd
þ
�
1−

Prd
πκ

��
r
rd

�2

< 0: [S7]

This criterion is illustrated in Fig. S7.
Thereare three regimes for this inequality, aspictured inFig. 4D:

(i) For P <P1 ¼ 0, Eq. S7 has no solution.
(ii) For P1 <P <P2 ¼ πκ=rd, Eq. S7 is satisfied on the interval

r −c ¼ rd

1þ
ffiffiffiffiffi
Prd
πκ

q < r< rþc ¼ rd

1−
ffiffiffiffiffi
Prd
πκ

q : [S8]

(iii) For P2 <P, the upper threshold radius diverges and Eq.
S7 is equivalent to r > rc

−.
To express rc

– and rc
+ as functions of c, we have to specify a

particular form for the dependence of P on c. In the limit of a
very dilute solution, one can use the ideal solution hypothesis

PðcÞ ¼ P
�
12 μM

�
þ kBT

a
ln
�

c
12 μM

�
; [S9]

where a = 0.85 nm is the length increment of the polymer upon
binding of a dynamin dimer and where the value of Pð12 μMÞ is
deduced from the measurement of fd (12 μM) (see main text). Eq.
S9 allows us to express the boundaries c1* and c2* of the three
concentration regimes described in the main text as the concen-
trations at which P ¼ P1 and P ¼ P2, respectively. This yields

c∗1 ¼
�
12 μM

�
× exp

�
− a

Pð12 μMÞ
kBT

�
≃ 280 nM; [S10]

c∗2 ¼
�
12 μM

�
× exp

�
a
ðπκ=rdÞ−Pð12 μMÞ

kBT

�
≃ 12:6 μM: [S11]

Finally, we note that the argument presented here concerns
equilibrium situations, but that kinetic effects could prevent the
observation of dynamin nucleation even at concentrations and
tensions where it is favored.

3. Force Drop and the Influence of Dynamin Adsorption
3.1. Tubes Partially Covered by Dynamin. Here we are interested in
time scales that are large compared with the mechanical and
membrane equilibration times, but short compared with the
dynamin growth times. In this section, we therefore consider the
growth process of dynamin to be essentially frozen, with Ld fixed.
The behavior of the tube on longer time scales is described in
SI Section 3.3. The partial equilibrium of the system is described
by a minimization of F with respect to L and r, but with Ld < L
imposed. This yields the force needed to hold the partially dy-
namin-covered tube:

f ¼ μb ¼ 2π
ffiffiffiffiffiffiffiffi
2σκ

p
; [S12]

which is equal to the force fb needed to hold a completely bare
membrane tube. Hence, a partial dynamin coat does not change
the force needed to pull a tube. An intuitive way of seeing this
result is to say that although dynamin is able to exert a force while
polymerizing, this force can only be visualized in our setup if it
pushes the bead held by the optical tweezers away from its resting
position. As long as the dynamin helix touches only the bead or
only the vesicle or is discontinuous between the two, it will not be
able to induce such a displacement, whereas it will if it is contin-
uous. Because the membrane is a two-dimensional liquid on the
timescales considered, this situation is exactly that of a swimmer
who is unable to move a rock sitting in the middle of the pool, but
who will be able to take two rocks apart by placing himself be-
tween them and pushing on both of them at the same time.

3.2. Adsorbed Dynamin Has a Negligible Influence on the Tube. In our
model, we consider only the influence of polymerized dynamin
and not of adsorbed dynamin. Here we show that the amount of
dynamin adsorbed on the membrane tube is not only too low to be
seen in fluorescence microscopy but also too low to have any
measurable mechanical effect. Indeed, in general, proteins
adsorbed on a membrane are expected to change its bending
rigidity from κ to ~κ and to induce a spontaneous curvature r0.
Such modifications are expected to change the force needed to
maintain a bare tube to

~f b ¼ 2π
ffiffiffiffiffiffiffiffi
2σ~κ

p  ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ~κ

2σr20

s
−

ffiffiffiffiffiffiffiffiffi
~κ

2σr20

s !
: [S13]

Similar to what was discussed above, this result is expected to still
be valid if the tube is partially coated by dynamin.
Experimentally, such deviations of the force are not observed.

Indeed, we see in Fig. 2E that the force needed to hold the tube
does not change upon dynamin injection until the tube is fully
covered by the polymer. Hence, we can safely neglect dynamin
adsorption.

3.3. Tubes Fully Covered by Dynamin. Here we deal with long time
scales,where thedynaminpolymer fully covers themembrane tube.
This is equivalent to assuming a chemical equilibrium between
polymerized dynamin and the dynamin solution. When dynamin
fully covers the tube (Ld = L), the growing polymer touches both
the vesicle and the optical tweezers’ bead, hence exerting a force
pushing them apart in the same way that a polymerizing micro-
tubule held at one end can exert a force on a wall at its other end
(9). Returning to our formalism, we note that PðcÞ has units of a
force, and it can be seen as the force one needs to exert on a
polymerizing dynamin helix to stall its growth. This force is exactly
equivalent to the stall force of polymerizing microtubules.
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In the cases considered in this paper, this force helps the optical
tweezers to hold the membrane tube. To prove this, we minimize F
with respect to L while imposingLd= L. Assuming that we are in a
regime where dynamin polymerizes (μd < μb), this is equivalent to
minimizing F with respect to r, Ld, and L at the same time. Both
procedures yield the force needed to hold a completely coated tube:

fd ¼ μd ¼
πκ
rd

þ 2πrdσ−P ðcÞ; [S14]

which is clearly the force needed to pull a membrane tube of
radius rd from the vesicle minus the dynamin stall force.
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Fig. S1. Histogram of the membrane rigidities κmeasured for 11 giant unilamellar vesicles (GUVs) of egg phosphatidylcholine (EPC) + 12.5% PtdIns(4,5)P2 + 1%
GloPIP2 determined as in ref. 1. The average value is 16.1 kBT.

1. Sorre B, et al. (2009) Curvature-driven lipid sorting needs proximity to a demixing point and is aided by proteins. Proc Natl Acad Sci USA 106:5622–5626.

Fig. S2. Stabilization of a membrane tube by dynamin. Dynamin (green) was injected on a tube extracted from a GUV (red) with a bead maintained with
optical tweezers (OT). After dynamin injection, the tube was covered with dynamin and the GUV was then moved to a field without dynamin in solution. When
the OT was turned off, the tube did not fully retract, and instead just started to move with Brownian motion. (Scale bar, 10 μm.)
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Fig. S3. Histogram of growth velocities of single dynamin clusters as observed by time-lapse confocal imaging (see Figs. 1 and 2).

Fig. S4. Fluorescence recovery after photobleaching (FRAP) experiment on a dynamin coat. A tubule precoated with dynamin-Alexa 488 (A) was photo-
bleached (see red box in A) at 488-nm wavelength. As no fluorescence recovery is observed (see 60-s postbleach image and B), we conclude that dynamin is
polymerized and not just adsorbed onto the tubule.

Fig. S5. FRAP experiment for annealing. During continuous injection of dynamin-Alexa 488 with a micropipette (see Fig. 2A), the dynamin coat was pho-
tobleached at 488 nm (red box). No recovery was observed 30-s postbleach. To separate the dynamin seeds that have not annealed, the tubule was elongated
by displacing the micropipette holding the vesicle in the presence of dynamin-Alexa 488 flow. When the dynamin-Alexa 488 micropipette was moved away,
the contrast increased and some new seeds (red arrows) appeared in the bleached region. This shows that complete annealing has not occurred.

Roux et al. www.pnas.org/cgi/content/short/0913734107 4 of 6

www.pnas.org/cgi/content/short/0913734107


Movie S1. Using optical tweezers, a tube is extracted from a GUV. Then, a second micropipette filled with a 12 μM green-labeled dynamin solution is brought
close to the tube. The tube is then rapidly covered with dynamin. See also Fig. 2A.

Movie S1

Fig. S6. Squeezing of a membrane tubule by dynamin polymerization. Under appropriate conditions (low fluorescence excitation), it is possible to see a
narrowing of the tube (red fluorescence) reflected by a lower fluorescence intensity, where dynamin is polymerized (green channel). (Scale bar, 10 μm.)

Fig. S7. Plot of the free energies per unit length of the bare tube μb (thick red line) and of the coated tube μd (blue lines) as a function of κ/2r2. The various
blue curves are plotted for different values of P. The lower the curve, the larger the P. The parameter regimes where the blue curve lies below the red curve
represent situations where dynamin polymerization is energetically favored. We note two changes of behavior as P is varied: For low values of P, the bare tube
is always more stable (upper solid blue line); for intermediate values of P, the coated tube is more stable only for intermediate tensions (middle solid blue line);
and for large values of P, the coated tubes are always more stable at low tensions, but not at high tensions (lower solid blue line). The value of P1 limiting the
two first regimes is indicated by the dashed blue line, and the value of P2 limiting the two last regimes is indicated by the dotted blue line.
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Movie S2. DivX codec is needed to read this file. A bead held in optical tweezers is used to pull a tube from a giant vesicle. First, a connection is established
between bead and vesicle before the tube is then pulled. In the absence of dynamin, the tube is readily reincorporated after the tweezers are switched off.
Next, a tube is again pulled with the optical tweezers and dynamin is injected through a second micropipette. The tweezers are then switched off again, but
the tube does not retract fully.

Movie S2

Movie S3. Movie of data presented in Fig. 2D.

Movie S3
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