
Supporting Information
Muller-Landau 10.1073/pnas.0911637107
Stability and Invasibility of Equilibria
Stability of Coexistence Equilibria. We can formally verify that a
two-species equilibrium is stable by examining the derivative of dp1dt
with respect to p1 and the derivative of dp2

dt with respect to p2 at
the equilibrium ðp1; p2Þ ¼ ðbp1;bp2Þ; both must be negative for the
equilibrium to be stable. Starting from the equations given in the
main text,
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At the two-species coexistence equilibrium, where bp1 ¼ f2ðh1 − h2Þ
f2 − f1

and bp2 ¼ h2 f2 − h1 f1
f2 − f1

,
we have
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Thus the conditions for stability are

f2 h2ðf2 − f1Þ> f1ðh2 f2 − h1 f1Þ

h2ðf2 − f1Þ> f1ðh1 − h2Þ:
Or equivalently

h2 f 22 − 2 f1 f2 h2 þ h1 f 21 > 0

h2 f2 > h1 f1:

Because we have h2 f2 > h1 f1 as a condition of coexistence, the
second condition holds. And because h1 > h2, we have

h2 f 22 − 2f1 f2 h2 þ h1 f 21 > h2 f 22 − 2 f1 f2 h2 þ h2 f 21 ¼ h2ðf2 − f1Þ2 > 0:

Thus the first condition holds. The equilibrium is stable.
The same procedure shows that the coexistence equilibria for

three or more species are also stable.

Invasibility of Other Equilibria.We can formally evaluate whether a
given equilibrium is invasible by species i by examining dpi

dt and its
derivative with respect to pi at the equilibrium. Here, I provide
an example demonstrating the invasibility of both one-species
equilibria in the case of two species that can coexist.
The equilibrium abundance of species 1 when it is the only

species present is simply h1. Thus, substitution into the equations
obtained in the previous section shows that
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Because we have h2 f2 > h1 f1 as a condition of coexistence, this
derivative is positive. Thus, the growth rate of species 2 is in-
creasing away from zero at p2 ¼ 0, which means species 2 can
invade.
Similarly, the equilibrium abundance of species 2 when it is the

only species present is simply h2. At this equilibrium,

dp1
dt

����
p1¼0; p2¼h2

¼ m½ðh1 − h2Þ�;

that is, species 1 is increasing. (This reflects the simplistic
assumptions of the basic model, which assume there is no seed
limitation.) Thus, species 1 can invade.
The same procedure can be used to evaluate invasibility for

systems of three or more species.

Invasion and Coexistence Conditions in the Basic Tolerance–
Fecundity Model
Two Species. Two species satisfying h1 > h2 and f2 > f1 can coexist
if and only if f2 h2 > f1 h1. Thus, if there is single resident species
ðf1; h1Þ, then a more tolerant and less fecund species ðf ; hÞ can
always invade. It will coexist with (rather than exclude) the
resident if and only if fh< f1 h1 or, equivalently, h< f1 h1

f (Fig.
2D). A more fecund and less tolerant species can invade if and
only if fh> f1 h1 or, equivalently, h> f1 h1

f (Fig. 2D). It is able
to coexist with the resident under all conditions that allow
invasion.

Three Species. Three species satisfying h1 > h2 > h3 and f3 > f2 > f1
can coexist if and only if f3 h3 > f2 h2 > f1 h1 and ðf2 h2 − f1 h1Þ

ðf2 − f1Þ >
ðf3 h3 − f2 h2Þ

ðf3 − f2Þ . Suppose there are two coexisting resident species
ðf1; h1Þ and ðf2; h2Þ and an invader ðf ; hÞ. If the invader is more
tolerant and less fecund than both residents, it can always invade.
It will coexist with both residents if and only if
ðf1 h1 − fhÞ
ðf1 − f Þ > ðf2 h2 − f1 h1Þ

ðf2 − f1Þ , equivalently, fh< f1 h1 − ðf1 − f Þðf2 h2 − f1 h1Þ
ðf2 − f1Þ , or

h< f1 h1
f − ðf1 − f Þðf2 h2 − f1 h1Þ

f ðf2 − f1Þ . An invader that is more fecund and less
tolerant than both residents can invade if and only if fh> f2 h2 or,
equivalently, h> f2 h2

f . It will coexist with both residents rather
than excluding the less tolerant one if and only if
ðf2 h2 − f1 h1Þ

ðf2 − f1Þ > ðfh− f2 h2Þ
ðf − f2Þ , equivalently, fh< f2 h2 þ ðf2 h2 − f1 h1Þðf − f2Þ

ðf2 − f1Þ , or

h< f2 h2
f þ ðf − f2Þðf2 h2 − f1 h1Þ

f ðf2 − f1Þ . A potential invader that is of inter-
mediate fecundity and tolerance will be able to invade only if
ðfh− f1 h1Þ
ðf − f1Þ > ðf2 h2 − fhÞ

ðf2 − f Þ or, equivalently, h> f1 h1
f þ f2 h2ðf − f1Þ

f ðf2 − f Þ . It will
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coexist with both residents, rather than excluding the less tolerant
species, if and only if fh< f2 h2 or, equivalently, h< f2 h2

f (Fig. 2E).

Four or More Species. n species satisfying h1 > . . . > hk > . . . > hn
and fn > . . . > fk > . . . > f1 can coexist if and only if
fn hn > . . . > fk hk > . . . > f1 h1 and also
f2 h2 − f1 h1

f2 − f1
> f3 h3 − f2 h2

f3 − f2
> . . . > fk hk − fk− 1 hk− 1

fk − fk− 1
> fkþ1 hkþ1 − fk hk

fkþ1 − fk
> . . . >

fn hn − fn− 1 hn− 1
fn − fn− 1

. Suppose there are n > 3 resident species ðf1; h1Þ,
ðf2; h2Þ, . . . ðfn; hnÞ, and an invader ðf ; hÞ. As in all cases, an in-
vader that is more tolerant and less fecund than all residents can
always invade. As in the three-species case, it will coexist with all
residents if and only if ðf1 h1 − fhÞ

ðf1 − f Þ > ðf2 h2 − f1 h1Þ
ðf2 − f1Þ or, equivalently,

h< f1 h1
f − ðf1 − f Þðf2 h2 − f1 h1Þ

f ðf2 − f1Þ . As in all cases, an invader that is more
fecund and less tolerant than all residents can invade if and
only if the product of its fecundity and stress tolerance
exceeds that of the most fecund resident, i.e., if fh> fn hn or,
equivalently, h> fn hn

f . As in the three-species case, it will
coexist with all residents rather than excluding the least toler-
ant one if and only if ðfn hn − fn− 1 hn− 1Þ

ðfn − fn− 1Þ > ðfh− fn hnÞ
ðf − fnÞ , equivalently,

fh< fn hn þ ðfn hn − fn− 1 hn− 1Þðf − fnÞ
ðfn − fn− 1Þ , or h< fn hn

f þ ðfn hn − fn− 1 hn− 1Þðf − fnÞ
f ðfn − fn− 1Þ . A

potential invader that is of intermediate fecundity and toler-
ance between species k and species k + 1 will be able to invade
if and only if ðfh− fk hkÞ

ðf − fkÞ > ðfkþ1 hkþ1 − fhÞ
ðfkþ1 − f Þ or, equivalently,

h> fk hk
f þ fkþ1 hkþ1ðf − fkÞ

ðfkþ1 − f Þ . If there is only one resident with higher
fecundity, then it will coexist with this resident (rather than
exclude it) if and only if fh< fn hn or, equivalently, h< fn hn

f . If
there are two or more residents with higher fecundity, it will
coexist with them (rather than excluding the next more fecund
species, species k + 1), if and only if fkþ1 hkþ1 − fh

fkþ1 − f > fkþ2 hkþ2 − fkþ1 hkþ1
fkþ2 − fkþ1

or, equivalently, h< fkþ1 hkþ1
f − ðfkþ1 − f Þðfkþ2 hkþ2 − fkþ1 hkþ1Þ

f ðfkþ2 − fkþ1Þ .
If there are two or more residents with higher tolerance, it will

coexist with them both (rather than excluding the next more
tolerant, species k), if and only if fk hk − fk− 1 hk− 1

fk − fk− 1
> fh− fk hk

f − fk
or,

equivalently, h< fk hk
f þ ðf − fkÞðfk hk − fk− 1 hk− 1Þ

f ðfk − fk− 1Þ (Fig. 2F).
Note that in general, invasion conditions for interior species in

the n-species case depend only on the single next more fecund
and single next less fecund species. In contrast, whether such an
invader coexists with all of the residents depends on the two next
more fecund and the two next less fecund species. The reason is
that the abundance of an interior species always depends on its
parameter values and the parameter values of its first nearest
neighbor species on both sides. Invasion requires only that the
invader's abundance is greater than zero and thus depends only
on these first nearest neighbors. In contrast, coexistence requires
also that the species on each side of the neighbor continue to
have abundances greater than zero, and this depends on their
nearest neighbors as well.

The Tolerance–Fecundity Model with Poisson Seed Rain
Here I consider how Poisson seed rain alters dynamics and
coexistence conditions under the tolerance–fecundity model.
This is the simplest formulation of seed limitation and is the one
commonly used in the competition–colonization model. Poisson
seed rain captures only seed limitation due to limited pop-
ulation-level seed production (source limitation), not additional
limitation due to clumping and limited dispersal (dispersal lim-
itation). For convenience, let us denote the equilibrium abun-
dance under Poisson seed rain of species i as ~pi and refer to it as
the seed-limited equilibrium abundance, thus distinguishing it
from the equilibrium abundance under uniform seed rain, de-

noted bpi, and referred to as the seed-saturated equilibrium
abundance.

One-Species Case. It is useful to begin by considering persistence
conditions for a single species in isolation. Because seed rain is
not uniform, seeds will fail to reach a proportion of sites equal to
expð− f1 p1Þ. Thus, at equilibrium,

~p1 ¼ h1ð1− expð− f1 ~p1ÞÞ
That is, species 1 occupies that fraction of the habitat in which it
can recruit, h1, at which its seeds arrive. We can obtain an ap-
proximate solution to this by first substituting in the second-or-
der Taylor expansion of the exponential function [that is,
expðxÞ≈1þ xþ x2=2], which leads to the equation

~p1 ≈ h1

 
1−

 
1− f1 ~p1 þ ðf1 ~p1Þ2

2

!!
:

The solution to this equation is

~p1 ≈
2ðf1 h1 − 1Þ

f 21 h
2
1

:

This approximate solution is good for f1 p1 close to zero and
becomes progressively worse as this quantity increases, as shown
by comparisons with simulation results (Fig. S1). Note that this is
quite different from the solution in the case of uniform seed rain,
which is simply bp1 ¼ h1 (Fig. S1).
The equilibrium abundance of a single species will be greater

than zero only if f1 h1 > 1. Thus, this species can invade an empty
habitat only if this condition is met. In the case of uniform seed
rain with no seed limitation, equilibrium abundance and the
possibility of invading and persisting are insensitive to the ab-
solute value of the fecundity. Here, in contrast, they depend
directly on absolute fecundity. Note also that the condition for
invasion and persistence can equivalently be written f1 bp1 > 1,
that is, as a requirement that the product of a species’ fecundity
and its seed-saturated equilibrium abundance be greater than
one. I conjecture that this will prove to be a general condition for
a species to invade under Poisson seed rain.

Two-Species Case. When considering the dynamics of two inter-
acting species under Poisson seed rain, we need to account for the
probabilities of each seed winning each type of site under all
possible combinations of numbers of seeds arriving of each
species. Thus, at equilibrium,

~p1 ¼ ðh1 − h2Þð1− expð− f1 ~p1ÞÞ

þ h2 ∑
∞

i¼1
∑
∞

j¼0

" 
ðf1 ~p1Þiexpð− f1 ~p1Þ

i!

! 
ðf2 ~p2Þjexpð− f2 ~p2Þ

j!

!	
i

iþ j


#

~p2 ¼ h2 ∑
∞

i¼0
∑
∞

j¼1

" 
ðf1 ~p1Þiexpð− f1 ~p2Þ

i!

! 
ðf2 ~p2Þjexpð− f2 ~p2Þ

j!

!	
j

iþ j


#
:

Essentially, species 1 occupies that fraction of ðh1 − h2Þ in which
its seeds arrive, plus a fraction of h2 that reflects the probability
that i of its seeds arrive (the first term in parentheses after the
summation), j seeds of species 2 arrive (the second term), and its
probability of winning under those arrivals (the last term),
summed over all possible seed arrivals i and j. The fraction of h2
occupied by species 2 is calculated in like fashion. Note that now
p1 þ p2 < h1, because there is nonzero probability that both
species will fail to arrive in sites where both can recruit, and that
species 1 will fail to arrive in sites where only it can recruit.
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These equations cannot be solved for the equilibrium abun-
dances in closed form, but they can be solved numerically through
iteration (essentially simulation). Simulations show that two
species whose respective stress tolerances and the ratio of whose
fecundities together enable coexistence in the case of uniform
seed rain can also coexist under Poisson seed rain provided that
f1 bp1 > 1 and f2 bp2 > 1; that is, the product of fecundity and seed-
saturated equilibrium abundance must be greater than one for
both species. Whereas before the lifetime of individual species
and the units of fecundity were irrelevant, now we must consider
these as well. Fecundity here is the number of seeds produced
per site occupied by an adult per year (or, equivalently, re-
generation season).
It is instructive to specifically examine the dynamics of a typical

pair of interacting and potentially coexisting species as we scale
the fecundities of both species up and down (Fig. 3B, Fig. S2).
Recall that in the case of uniform seed rain, the absolute values
of fecundities were unimportant, and thus such scaling would
make no difference to equilibrium abundances. With Poisson
seed rain, in contrast, very low fecundities do not admit the
persistence of either species (Fig. S2 A and F). As fecundities of
both species are increased in parallel, the more fecund species
first becomes able to persist, and then at still higher fecundities
both species coexist, converging eventually on seed-saturated
equilibrium abundances (Fig. S2).
Coexistence conditions under the case of Poisson seed rain are

more restrictive than in the case of uniform seed rain (Fig. 3A). In
particular, the requirements f1 bp1 > 1 and f2 bp2 > 1 can be re-
written bp1 > 1=f1 and bp2 > 1=f2. In contrast, under uniform seed
rain these quantities need only be greater than zero. Thus, co-
existence requires that f2 h2 > f1 h1 þ f2 − f1

f2
(not simply

f2 h2 > f1 h1) and h1 > h2 þ f2 − f1
f1 f2

(not simply h1 > h2). A species
that is more tolerant and less fecund than the resident species 1
can invade only if its stress tolerance h and fecundity f satisfy
h> h1 þ f1 − f

ff1
, and it will coexist with the resident only if

fh< f1 h1 − f1 − f
f1

. A more fecund (and less tolerant) species can

invade only if fh> f1 h1 þ f − f1
f , and it will coexist only if

h< h1 − f − f1
ff1

. This represents a distinct narrowing of the param-
eter range that enables coexistence relative to that for uniform
seed rain (compare Figs. 2D and 3A).

n-Species Case. For n> 2 species under Poisson seed rain, the
equations for abundances at equilibrium are straightforward, if
long, to write down. Now the conjectured conditions for coex-
istence are fk bpk > 1 for 1≤ k≤ n. This means that bpk > 1=fk for all
k—effectively setting minimum abundances for all species. Using
the equations for the seed-saturated equilibrium for the n-spe-
cies case, the conjectured conditions for coexistence are thus
h1 − h2 > f2 − f1

f1 f2
, fn hn > fn− 1 hn− 1 þ fn − fn− 1

fn
, and hk fk − hk− 1 fk− 1

fk − fk− 1
>

hkþ1 fkþ1 − hk fk
fkþ1 − fk

þ 1
fk
for 1< k< n.

The last condition takes the place of the less restrictive con-
dition hk fk − hk− 1 fk− 1

fk − fk− 1
> hkþ1 fkþ1 − hk fk

fkþ1 − fk
found for uniform seed rain.

This reduces the range of parameters compatible with co-
existence relative to the case of uniform seed rain and, in par-
ticular, admits of parameter combinations for two resident
species that make it impossible for any intermediate species to
invade and coexist with them.
Simulations confirm that these conditions correspond to

parameter combinations at which species are able to invade and
coexist. As in the two-species case, it is instructive to consider how
the equilibrium changes as fecundity is scaled up for a group of
three species whose habitat tolerance values and ratio of
fecundities allow coexistence for high enough values of fecundity
(Fig. S3). As fecundity is increased in parallel for all species
starting from very low values, species 3 is the first to be able to
persist (Fig. S3 A and B), then species 2 (Fig. S3C), and then
species 1 (Fig. S3D), with equilibrium abundances eventually
converging on seed-saturated values (Fig. S3 E and F).
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Fig. S2. Simulation results for abundances of two species when dynamics are governed by the tolerance–fecundity model with Poisson seed rain. Here the
species have habitat tolerances h1 ¼ 0:8 and h2 ¼ 0:4, and the fecundity of species 2 is always four times that of species 1. Thus the seed-saturated equilibrium
abundance of species 2 when alone is 0.4 (dashed thin gray line). If the fecundity of the more fecund species, f2 < 1=h2 (dotted gray line in F), then neither
species can maintain itself (A). As fecundities are increased in parallel above this threshold, the seed-limited equilibrium abundance of species 2 initially in-
creases toward its seed-saturated equilibrium abundance in isolation whereas species 1 remains unable to persist (B and C). Once the fecundities are increased
such that f1 > 1=bp1 (dotted black line in F), then species 1 can also persist (D). As fecundities increase further, the seed-limited equilibrium abundances approach
the seed-saturated abundances under 2-species coexistence (thick dashed lines). Simulations were performed as for Fig. S1.

Fig. S1. Simulation results for abundance of a single species when dynamics are governed by the tolerance–fecundity model with Poisson seed rain. Here the
single species has habitat tolerance h1 ¼ 0:8, and thus its seed-saturated equilibrium abundance (as a proportion of total area that it occupies) is 0.8 (dashed
line). If its fecundity, f1 < 1=h1 (vertical dotted line in F), then the species cannot maintain itself and quickly dies out (A). For fecundities above this threshold, the
equilibrium abundance under Poisson seed rain (circles) gradually increases (B–E) toward the equilibrium in the absence of seed limitation (0.8). Overall, the
Taylor series-based approximation (F, thick line) provides a good fit to the observed equilibrium abundance in the simulations (circles) for fecundities close to
the threshold for persistence. In each simulation, the total area comprises 10,000 cells, each of which can support one adult; 10% of adults die each time step;
and initial abundance is equal to the seed-saturated abundance. The equilibrium abundance of a species in a simulation is calculated as its mean abundance for
time steps 501–1,000. Fecundity is defined as the mean seed production per adult per time step.
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Fig. S3. Simulation results for abundances of three species when dynamics are governed by the tolerance–fecundity model with Poisson seed rain. Here the
species have habitat tolerances h1 ¼ 0:97, h2 ¼ 0:7, and h3 ¼ 0:45, and the fecundities of species 2 and 3 are always four and eight times that of species 1,
respectively. If the fecundity of the most fecund species, f3 < 1=h3, then none of the species can maintain itself (A). As fecundities are increased in parallel above
this threshold (dotted light gray line in F), the seed-limited equilibrium abundance of species 3 initially increases toward its seed-saturated equilibrium
abundance when alone (dashed thin light gray line), whereas species 1 and 2 remain unable to persist (B). Species 2 becomes able to persist and coexist with
species 3 (C) once its fecundity exceeds a threshold (dotted dark gray line in F) that equals the inverse of its seed-saturated equilibrium abundance when
coexisting with species 3 alone; with higher fecundities abundances of both species 2 and 3 first converge on their seed-saturated equilibria under two-species
coexistence (dashed thin dark gray line for species 2; dashed thick light gray line for species 3). Once fecundities are further increased such that f1 > 1=bp1 (dotted
black line in F), then species 1 can also persist and all three species coexist (D). As fecundities increase further, the seed-limited equilibrium abundances ap-
proach the seed-saturated abundances under three-species coexistence (thick dashed lines in E and F). Simulations were performed as for Fig. S1.
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