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Beak Shape Digitization. Lateral photographs of museum speci-
mens of each species were taken under both normal light
exposure (Fig. 1A) and underexposed conditions (Fig. 1B). Un-
derexposed photographs allow us to track the silhouette of the
bird making the detection of the beak profile easier and more
accurate. Using a feature detection program (Steerable—ImageJ
plugin), we detect the contour of the beak at pixel resolution
(Fig. 1B; Pixel size ¼ 40 μm). The photograph taken under nor-
mal exposure allows the determination of the length axis of the
beak, as traced in Fig. 1A. The beak profile obtained from the
feature detection analysis corresponds to a set of points (pixels)
in the plane (Fig. 1C—red dots). In order to obtain a smooth pro-
file of the upper beak, we trace a Bezier spline of the upper con-
tour of the beak (Fig. 1C—blue dots). The smooth upper beak
profile obtained from the Bezier spline (Fig. 1D) is determined
for all species and used for the pairwise comparison of shapes.

Pairwise Comparisons of Beak Shapes.Once the upper beak shapes
for all species have been determined, we are interested in quan-
tifying the differences between a given pair of shapes. Specifically,
we want to quantify the difference between a reference, unmo-
dified shape, and a beak shape transformed via a scaling trans-
formation. To do so, we define the following metric distance
between two real functions, z1ðxÞ and z2ðxÞ:

‖z1ðxÞ − z2ðxÞ‖≡
R xm
0 dxðz1ðxÞ − z2ðxÞÞ2R xm
0 dxðz1ðxÞ þ z2ðxÞÞ2

; [S1]

where xm ¼ Min½x1; x2�, with x1 and x2 being the maximal values
that the x coordinates take for the functions z1ðxÞ and z2ðxÞ re-
spectively. As explained in the main text, we define the error
in the shape as Esðsℓ; sdÞ≡ ‖y1ðxÞ − Tsℓ;sd ½y2ðxÞ�‖ which measures
the difference between the undeformed shape y1ðxÞ and the
scaled version, Tsℓ ;sd ½y2ðxÞ�, of a beak shape y2ðxÞ. The transfor-
mation Tsℓ;sd ½·� of the shape is implemented through the scaling
matrix:

Tsℓ;sd ¼
sℓ 0

0 sd

� �
;

which is a particularly simple case of the general matrix represen-
tation of the affine group. In a similar way than for the shape, we
define the error in the shape derivative as the quadratic differ-
ence between the derivatives of the reference and transformed
shapes, i.e., Edðsℓ; sdÞ≡ ‖y01ðxÞ − Tsℓ;sd ½y2ðxÞ�0‖, where y0ðxÞ≡
dyðxÞ∕dx *. The defined measures are dimensionless quantities
that depend only on the two scaling factors sℓ and sd. A necessary
condition for two given beak shapes to be related through a scal-
ing transformation (meaning that they differ only in length and
depth) is the existence of a minimum of both defined measures,
Es and Ed, for particular values s�ℓ and s�d of the scaling factors.
The values of the measures at the minimum (the residuals, i.e.,
Esðs�ℓ; s�dÞ and Edðs�ℓ; s�dÞ) measure how closely related the refer-
ence and transformed shapes are.

In order for the reference and transformed shapes to collapse,
landmark points in one shape must be mapped onto the same

landmark points of the other shape. In particular, the end point
of the beak of the reference shape should coincide with the end
point in the collapsed shape. This constrain allows us to estimate
the scaling factors that may collapse the shapes. If the end points
of the reference (y1ðxÞ) and compared (y2ðxÞ) shapes are given by
ðx1; y1Þ and ðx2; y2Þ respectively (Fig. 2), then the scaling factors
that may collapse the shapes must be close to

�sℓ ¼ x1
x2

and �sd ¼
y1
y2
: [S2]

The range of scaling factors within which one is allowed to search
is determined by the experimental error in the measure of the end
point of the beak, which is the major source of error in our ex-
periments. If the coordinates of the end points of the beaks have
experimental uncertainties δx1, δx2, δy1 and δy2 (Fig. 2), then the
uncertainties in the scaling factors that may collapse the shapes
are given by

δsℓ
�sℓ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
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s
and

δsd
�sd

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
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[S3]

where the last expressions are obtained by error propagation in
Eq. 2. The experimental uncertainties in the coordinates, δx and
δy, are the same for all shapes as they depend on the precision
with which the last point is measured. From the thickness of the
tip of the glass pipette we estimate δy≃ δx ¼ 0.5 mm. Therefore,
the smaller the beak the larger the relative errors δx∕x and δy∕y,
leading to larger relative errors in the scaling factors (Eq. 3). For
simplicity, we consider an upper bound to the relative error in the
determination of the end point of the beak: we approximate the
relative error to be the same for all shapes and equal to that of the
smallest beak, for which we estimate it to be δx∕x≃ 0.05 and
δy∕y≃ 0.05, as the typical size of the smallest beaks (C. olivacea
and T. bicolor) is about 10 mm. This is to say that the coordinates
of the end point of the smallest beak are determined within a 5%
precision (largest relative error). Using Eq. 3 we then estimate
the relative error in the scaling factors to be

δsℓ
�sℓ

¼
ffiffiffi
2

p δx
x
≃ 0.07 and

δsd
�sd

¼
ffiffiffi
2

p δy
y
≃ 0.07: [S4]

The range of scaling factors within which one is allowed to
search for a minimum in Es and Ed is thus ð�sℓ − δsℓ;�sℓ þ δsℓÞ
and ð�sd − δsd;�sd þ δsdÞ. If no minima of Es and Ed are found
within this range, the shapes do not collapse under scaling
transformations.

In the same way that the end point of the beak has an asso-
ciated uncertainty, the direction of the length axis has an angular
uncertainty δθ (Fig. 2), which arises from the uncertainty in the
measurement of the point where the upper and lower beaks come
together (Figs. 1, 2). If the coordinates of the point where the
upper and lower beaks come together (as measured from the tip
of the beak) are ðxc; 0Þ and the uncertainty in the determination
of this point is δyc in the direction perpendicular to the length
axis, then the angular uncertainty (for δθ ≪ 1) reads

δθ ¼ δyc
xc

: [S5]

*We note that the best method to find out whether a reference and a transformed shape
are indeed the same shape would be to show that these are congruent planar curves by
comparing their local curvatures. Unfortunately, this method proved too noisy for
our study.
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The existence of an error in the determination of the direction of
the length axis means that one has also to allow variations in the
angle θ, which correspond to rotations of the compared shape
y2ðxÞ relative to y1ðxÞ. In the same way than previously done for
the scaling factors, we determine the upper bound of the error in
θ by considering the smallest beak and obtain δθ ≃ 0.12 (approxi-
mately 7 degrees). We note that one does not know a priori what
are the spatial directions along which the shape should be scaled.
Therefore, regardless of the angular uncertainty δθ, one should,
in general, allow for rotations of the compared shape and ask if
there exist values of the rotation angle θ and scaling factors sℓ and
sd that lead to a collapse of the shapes.

In Fig. 3 we compare the shapes of the Medium and Large
Fround Finches (Geospiza fortis and Geospiza magnirostris). To
find out if the shapes do collapse via a scaling transformation
we minimize the measures Es and Ed as a function of the scaling
factors, and also as a function of the angle θ. Fig. 3B, C shows the
existence of a minimum of both measures Es and Ed as a function
of θ, sℓ and sd. The optimal relative rotation angle θ� obtained by
minimization is θ� ¼ 4� 5 degrees, which is consistent with the
fact that the length axis and the axis perpendicular to length are
the relevant axis for scaling, as the shapes collapse in this
coordinate system (see below). At the optimal angle θ�, there
is a minimum of both measures as a function of the scaling factors
(Fig. 3B); the obtained optimal scaling factors are s�x ¼ 0.67�
0.01 and s�y ¼ 0.51� 0.07, meaning that the shape of the upper

beak of the Large Ground Finch must be reduced by about a 30%
in length and 50% in depth in order to be superimposed on the
shape of the upper beak of the Medium Ground Finch.

Measure of Bmp4 Expression in the Beak Primordium.As explained in
the main text, we analyze the Bmp4 expression pattern in midsag-
gital sections of the frontonasal mass at embryonic stage 26 for
specimens of the different species in the genus Geospiza. We de-
fined four different measures of the expression pattern and cor-
related them with the scaling factors. In Fig. 4 we plot the
expression levels of Bmp4 as obtained using different measures,
against the scaling factors. All measures (but measure 4) show a
positive correlation of Bmp4 expression and beak depth. Beak
length also shows some degree of correlation with Bmp4 expres-
sion, although to a lesser degree than for beak depth. Measure 4
quantifies the total area of mesenchymal Bmp4 expression above
50% of the epithelial Bmp4 levels, normalized to the total area of
the beak; this measure shows essentially no correlation with beak
length or depth. The measure of Bmp4 expression that shows the
best correlation with the scaling factors and, therefore, with adult
beak morphology, is the maximal mesenchymal level of Bmp4 re-
lative to epithelial levels, as shown in the main text. When the
maximal value of mesenchymal Bmp4 expression is normalized
to basal mesenchymal levels (away from the epithelium), similar
results are obtained (Fig. 4), suggesting that the relevant magni-
tude is the maximal mesenchymal Bmp4 expression level.

Fig. S1. Digitization of a beak profile. (A) Lateral photograph of a museum specimen of a male Large Ground Finch (G. magnirostris) under normal exposure
conditions. The red dot corresponds to the position where upper and lower beaks come together, and the surrounding red square represents the associated
experimental uncertainty in the determination of this point. The red line, traced from the tip of the beak to the specified red dot, specifies the axis of beak
length. (B) Underexposed photograph of the same specimen as in A. The red line traces the profile of the beak and was determined using a feature detection
software. The end point of the beak (red dot) corresponds to the position where the keratin layer ends and the associated red square represents the experi-
mental uncertainty in the measurement of this point, which was determined with the help of a glass pipette (visible in the photograph). (C) Beak profile as
obtained using a feature detection software (red) and Bezier spline of the upper beak profile (blue). (D) Upper beak profile used in the comparative analysis of
beak shapes (same Bezier spline of the digitized beak profile as in C). In both C and D, the beak shape has been rotated so that the length axis of the beak
corresponds to the x axis and the origin of coordinates is at the tip of the beak.

Fig. S2. Error sources. We define the error sources (experimental uncertainty) in the digitization of the beak profiles of theMedium and Large Ground Finches
(G. fortis and G. magnirostris respectively), as they define the relevant range of scaling factors that may lead to the collapse of the shapes.
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Fig. S3. Quantitative comparison of the upper beak shapes of Medium and Large Ground Finches. (A) Beak shapes of the Medium and Large Ground Finches
used in the analysis. (B,C)We evaluate themeasures Es and Ed as a function of the angle θ and the scaling factors sℓ and sd , within the range of these parameters
that the experimental uncertainty allows for. We plot sections of the functions Esðsℓ; sd ; θÞ and Edðsℓ; sd ; θÞ for the optimal value of the angle θ� to show the
existence of a minimum in the ðsℓ; sdÞ subspace (B), and also for the optimal values of the scaling factors s�ℓ and s�d to show the existence of a minimum as a
function of θ (C). Although the dependence of Esðs�ℓ; s�d ; θÞ on θ is not strong within a large range of values of θ, the measure Edðs�ℓ; s�d ; θÞ shows a clear minimum
(C). (D) Collapsed shapes for the optimal values s�ℓ, s

�
d and θ� obtained from minimization of the measures Es and Ed .
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Fig. S4. Measures of mesenchymal Bmp4 expression and correlation with adult beak morphology. (Left) Definition of the measure of Bmp4 expression in
midsaggital sections of the frontonasal mass for the diffent species in Geospiza. (Right) Plots of the measures of Bmp4 expression defined as a function of the
scaling factors that quantify adult beakmorphological variability. Error bars in the differentmeasures of Bmp4 expression correspond to the standard deviation
obtained from 3 specimens of each species.
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