Supplementary information for:

Nonsense-mediated mRNA decapping occurs on polyribosomes in Saccharomyces cerevisiae

Wenqian Hu, Christine Petzold, Jeff Coller*, and Kristian E. Baker*

Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, OH 44106

*To whom correspondence should be addressed: K. Baker (keb22@case.edu) or

J. Coller (jmc71@case.edu)

b

Supplementary Figure 1 *GFP*^{*PTC67*} mRNA is a substrate for nonsense-mediated mRNA decay. (a) Transcription shut-off analysis of *GFP*^{*PTC67*} reporter mRNA in wild-type and *upf1* Δ cells. RNA (30 µg) isolated from cell aliquots removed at various time points after inhibition of transcription were subject to Northern blot analysis. *GFP*^{*PTC67*} mRNA and a loading control, *scR1* RNA, were detected using radiolabeled complementary oligonucleotides. (b) Quantification of mRNA levels, after normalization, measured in (a).

Supplementary Figure 2 Decapped, nonsense-containing mRNA is associated with polyribosomes in $xrn1\Delta$ cells. (a) Primer extension analysis for $PGK1^{PTC225}$ mRNA was performed on RNA recovered from sucrose gradient fractions after centrifugation of lysates from $xrn1\Delta$ cells. RNP, 80S, and polyribosome sedimentation profiles are indicated. FL: full length mRNA; – cap: decapped mRNA. (b) Quantification of decapped $PGK1^{PTC225}$ mRNA in RNP versus polyribosome fractions.

Nature Structural & Molecular Biology: doi:10.1038/nsmb.1734

а

Supplementary Figure 3 *dhh1\Delta/pat1\Delta* cells exhibit a strong defect in decapping of normal mRNA. Transcription pulse-chase analysis for *MFA2pG* reporter mRNA in wild-type and *dhh1\Delta/pat1\Delta* cells. Reporter gene expression was induced for 7 minutes and followed by inhibition of transcription. RNA, isolated from time points after inhibition of transcription, was analyzed by high resolution polyacrylamide gel electrophoresis and Northern blotting. *MFA2pG* reporter mRNA was detected using an oligonucleotide complementary to the poly(G) tract in the 3' UTR. *scR1* RNA served as a control for RNA loading. PI: pre-induction; dT: RNA treated with oligo d(T)/RNase H to delineate the migration pattern of deadenylated mRNA.

Supplementary Figure 4 Degradation of nonsense-containing mRNA is unaffected in $dhh1\Delta/pat1\Delta$ cells and dependent upon NMD. (a) Steady-state *CYH2* pre-mRNA levels in wild-type, $upf1\Delta$, $dhh1\Delta/pat1\Delta$, and $dcp2\Delta$ cells were detected by Northern blot. scR1 RNA levels serve as a control for loading. (b) Transcription shut-off analysis of $PGK1^{PTC225}$ mRNA in wild-type, $upf1\Delta$, $dhh1\Delta/pat1\Delta$, and $dcp2\Delta$ cells. $PGK1^{PTC225}$ mRNA half-lives after normalization to scR1 RNA (c). (d) Steady-state *CYH2* mRNA and pre-mRNA levels in wild-type, $upf1\Delta$, and $dhh1\Delta/pat1\Delta/GAL1$::UPF1 cells (UPF1 gene under control of the galactose-inducible, GAL1 promoter). Gal: cell grown in galactose media; Glu: cells grown in glucose media.

Name	Description	Reference
yJC151	MATa, $ura3\Delta$, $leu2\Delta$, $his3\Delta$, $met15\Delta$	EUROSCARF
yJC182	MATa, $ura3\Delta$, $leu2\Delta$, $his3\Delta$, $met15\Delta$, $xrn1::KanMX6$	EUROSCARF
yJC287	CB012: MATa, ade2-1, his3, leu2, trp1, ura3, pep4::HIS3, prb::HIS3, pre1::HIS3	1
yJC288	YIT613: MATa, ade2-1, his3, leu2, trp1, ura3, pep4::HIS3, prb::HIS3, pre1::HIS3, rpl25::LEU2 [pRPL25-Flag-URA3-CEN]	1
yJC324	MATa, ura3Δ, leu2Δ, his3Δ, met15Δ, dhh1::KanMX6, pat1::HIS3	This study
yJC327	МАТа, <i>ura3</i> Δ, <i>leu2</i> Δ, <i>his3</i> Δ, <i>met15</i> Δ, <i>dcp2::KanMX6</i>	2
yJC443	MATa, $ura3\Delta$, $leu2\Delta$, $his3\Delta$, $met15\Delta$, $upf1::KanMX6$	EUROSCARF
yJC751	MATa, ura3Δ, leu2Δ, his3Δ, met15Δ, dhh1::KanMX6, pat1::HIS3, URA3::GAL1-HA-UPF1	This study
pKB290	GFP WT	3
pKB303	GFP-PTC at codon 67	3
pJC331	PGK1pG	This study
pJC364	PGK1-PTC225	This study
pRP469	MFA2pG	4
oJC591	5'-CGGATAAGAAAGCAACACCTGGC-3'	This study
oJC620	5'-GATCAATTCGTCGTCGAATAAAGAAGACAA-3'	This study
oJC652	5'-ACCAAGGAGTTTGCATCAATGAC-3'	This study
oJC706	5'-GCUGAUGGAUGAAUGAACACUGCGUUUGCUGGCUUUGAUGAAA-3'	This study
oJC707	5'GCTGATGGCGATGAATGAACACTG-3'	This study
oJC809	5'-ACAAGATTCAATTGATTGACAACTAGTTGGACAAGGTCGACTCTATCATCA-3'	This study
oJC810	5'-TGATGATAGAGTCGACCTTGTCCAACTAGTTGTCAATCAA	This study
oJC826	5'-ATTGTTTTATATTTGTTGTAAAAAGTAGATAATTACTTCCTT TTTCATCAAAGCCAGCAAACGCAGTGTTCATCATCGCCATCAGC-3'	This study
oJC834	5'-AAAGTCACCGTCTTGGTTCTTTCATTCCCT-3'	This study
oJC836	5'-TGGAAGGCATTCTTGATTAGTTGGATGA TTTCATCAAAGCCAGCAAACGCAGTGTTCATTCATCGCCATCAGC-3'	This study
oJC838	5'-GCTCTCATTTCGATTGAATCGATGTGGTCT TTTCATCAAAGCCAGCAAACGCAGTGTTCATTCATCGCCATCAGC-3'	2
oJC839	5'-CTGGCTCTCACCTTCCGTCTCTTTA-3'	2
oKB118	5'-GGAGAAGAACTCTTCACTGGAGTTGTCCC-3'	This study
oKB132	5'-GGGCAGATTGTGTGGACAGGTAATGGTTGTCTG-3'	This study
oKB347	5'-CATAACCTTCGGGCATGGCACTCTTG-3'	This study
oRP100	5'-GTCTAGCCGCGAGGAAGG-3'	4
oRP121	5'-AATTCCCCCCCCCCCCCA-3'	4

Table 1. Yeast Strains, Plasmids and Oligonucleotides

SUPPLEMENTARY DATA

GFP^{PTC67} reporter mRNA is degraded by NMD

To demonstrate *GFP* reporter mRNA containing a PTC at codon 67 (*GFP*^{*PTC67*}) is targeted to degradation by NMD, a transcription shut-off analysis was performed on wild-type and $upf1\Delta$ cells (Supplementary Fig. 1). *GFP*^{*PTC67*} reporter mRNA was stabilized ~4-fold in $upf1\Delta$ cells (cf. 4 min versus 15 min in wild-type versus $upf1\Delta$ cells).

Decapping of normal mRNA is strongly inhibited in *dhh1* / *pat1* / cells

Deletion of the decapping activators *DHH1* and *PAT1* leads to a defect in mRNA decapping and a dramatic stabilization of normal mRNA¹⁸. To confirm that decapping of mRNA is inhibited in *dhh1\Delta/pat1\Delta* cells, transcription pulse-chase analysis was performed for *MFA2pG* reporter mRNA in wild-type and *dhh1\Delta/pat1\Delta* cells (Supplementary Fig. 2). Specifically, a brief induction of reporter mRNA transcription followed by inhibition of transcription produces a homogenous population of *MFA2pG* mRNA and decay of the mRNA is monitored over time. In wild-type cells, *MFA2pG* mRNA is deadenylated prior to the disappearance of the full-length mRNA and appearance of a decay fragment (generated by the block of 5' \rightarrow 3' exonucleolytic RNA digestion by the 18 nucleotide G track in the mRNA 3' UTR)¹⁸. In *dhh1\Delta/pat1\Delta* cells, reporter mRNA is deadenylated, however, the deadenylated mRNA is stable and accumulates over the time course and no decay fragment is detected. The stabilization of deadenylated mRNA is indicative of a defect in mRNA decapping.

Degradation of NMD substrates is unaffected in $dhh1\Delta/pat1\Delta$ cells

Three lines of evidence were used to demonstrate that recognition and degradation of NMD substrates are not affected in $dhh1\Delta/pat1\Delta$ cells. First, the steady-state level of the endogenous NMD substrate, *CYH2* pre-mRNA, was unchanged in $dhh1\Delta/pat1\Delta$ cells (as compared to wild-type cells; Supplementary Fig. 3a). In contrast, *CYH2* pre-mRNA levels increased in both NMD mutants ($upf1\Delta$) and decapping defective cells ($dcp2\Delta$). Second, transcription shut-off analysis for a PTC-containing reporter ($PGK1^{PTC225}$ mRNA) revealed that the mRNA half-life was identical in wild-type versus $dhh1\Delta/pat1\Delta$ cells (Supplementary Fig. 3b & c). Inhibition of NMD ($upf1\Delta$) or mRNA decapping ($dcp2\Delta$) lead to dramatic stabilization of $PGK1^{PTC225}$ mRNA, demonstrating that the reporter is indeed sensitive to NMD and degraded by a decapping-dependent mechanism. Third, when UPF1 was depleted in $dhh1\Delta/pat1\Delta'UUPF1::GAL1$ cells, the level of *CYH2* pre-mRNA increased dramatically (Supplementary Fig. 3d), indicating that degradation of nonsense-containing mRNA is dependent upon UPF1 and decayed predominantly by NMD in $dhh1\Delta/pat1\Delta$ cells. Together, these results demonstrate that the degradation of nonsense-containing mRNA is dependent upon NMD.

SUPPLMENTARY LITERATURE CITED

¹ Inada, T. *et al. RNA* **8**, 948-958 (2002).

² Hu, W., Sweet, T.J., Chamnongpol, S., Baker, K.E., & Coller, J. *Nature* **461**, 225-229 (2009).

³ Baker, K.E. & Parker, R. *RNA* **12**, 1441-1445 (2006).

⁴ Muhlrad, D., Decker, C.J., & Parker, R. *Mol Cell Biol* **15**, 2145-2156 (1995).