

Hirschey et al, Supplementary Figure 10

SIRT3:	Fed		Fasted	
	WT	КО	WT	КО
Glucose (mg/dL)	297	264	102	103
Free Fatty Acid (mM)	0.37	0.32	1.23	1.14
Ketone Bodies (mM)	0.21	0.18	1.58	1.32*

Supplementary Figure Legends

Figure S1. Working model. The increase in SIRT3 protein during fasting decreases the acetylation of LCAD, an important fatty acid oxidation (FAO) enzyme, resulting in increased FAO flux and energy production. In SIRT3-/-mice, LCAD remains hyperacetylated, resulting in reduced FAO that causes steatosis, reduced ketone body production, and reduced ATP generation resulting in cold intolerance.

Figure S2. Fasting induces SIRT3 expression in oxidative tissues.

Mitochondria isolated from tissues of fed or fasted (~24 h) wild-type mice were analyzed by western blotting analysis with an antiserum specific for SIRT3, electron transfer flavoprotein (ETF) was used as a reference, integrated density values were calculated for fed and fasted wild-type mice.

Figure S3. SIRT3-/- and wt mice show no differences in metabolomic profiling of hepatic amino acids.

Metabolomic analysis was conducted on mouse liver tissue, and data obtained in SIRT3-/- mice are shown relative to wt mice (n=5/genotype, fasted 24 h).

Figure S4. SIRT3-/- and wt mice show no differences in metabolomic profiling of hepatic organic acids.

Metabolomic analysis was conducted on mouse liver tissue, and data obtained in SIRT3-/- mice are shown relative to wt mice (n=5/genotype, fasted 24 h).

Figure S5. Abnormal accumulation of long-chain acylcarnitines in the livers of mice lacking SIRT3 during fasting.

Metabolomic analysis was conducted on mouse liver tissue, and data obtained in wt and SIRT3-/- mice are given in absolute values; data correspond to relative values in Figure 2b (n=5/genotype, fasted 24 h), *p<0.05.

Figure S6. Abnormal excretion of urine analytes in mice lacking SIRT3 during

fasting.

Metabolomic analysis was conducted on mouse urine, and data obtained in SIRT3-/mice are shown relative to wt mice (n=5/genotype, fasted 24 h), *p<0.05.

Figure S7. SIRT3-/- and wt mice show no differences in hepatic citrate synthase activity, and electron micrographs are similar.

a. Citrate synthase enzyme activity was measured in mouse liver tissue *ex vivo* (n=10/genotype from two separate trials, fasted 24 h), p=NS;**b**,**c**. Transmission electron micrograph images from wt (panel b) and SIRT3-/- (panel c) liver tissue.

Figure S8. Rates of lipogenesis, lipid uptake and lipid export are similar in wt and SIRT3-/- mice.

a. Radiolabeled ¹⁴C-oleic acid triglyceride synthesis was measured in wt and SIRT3-/mouse primary hepatocytes (two independent hepatocyte preparations, n=5 measurements/sample). **b.** Radiolabeled ¹⁴C-oleic acid lipid uptake was measured in wt and SIRT3-/- mouse primary hepatocytes (two independent hepatocyte preparations, n=5 measurements/sample). **c.** VLDL lipid export was measured in wt and SIRT3-/- mice (*n*=6/genotype, fasted 5 h), *p*=NS

Figure S9. Mass spectrometry analysis identified eight sites of LCAD acetylation, and LCAD lysine 42 is hyperacetylated in SIRT3-/- mice.

a. Summary peptide fragment table from acetylated lysine residues; **b**, **c**. Representative m/z spectra (K42) obtained from mass spectrometry analyses of LCAD from purified mouse liver mitochondria in wt and SIRT3-/- mice; **d**. Differential acetylation fold values for LCAD acetylated lysines from wt and SIRT3-/- hepatic mouse mitochondria.

Figure S10. SIRT3 deacetylates human LCAD in vitro and in vivo.

a. Protein sequence alignment between hLCAD (top) and mLCAD (bottom); **b.** Purified recombinant hLCAD expressed in *E. coli* was incubated *in vitro* with recombinant hSIRT3 or hSIRT3-H248Y (catalytically-inactive SIRT3 mutant); **c.** Expression vectors for wt hSIRT3, hSIRT3-H248Y (catalytically-inactive SIRT3 mutant), hSIRT4, or

hSIRT5 were co-transfected into HEK293 cells with expression vectors for FLAG-tagged hLCAD, and the level of acetylation of hLCAD was assessed after anti-FLAG immunoprecipitation followed by western blotting using an anti-acetyllysine antiserum.

Table S1. Metabolic parameters were measured and recorded in wt and SIRT3-/mice under fed and fasted conditions.