## PARTITIONING OF PERFLUOROOCTANOATE INTO PHOSPHATIDYLCHOLINE BILAYERS IS CHAIN LENGTH-INDEPENDENT

Wei Xie<sup>a</sup>, Geoffrey D. Bothun<sup>b</sup>, Hans-Joachim Lehmler<sup>a\*</sup>

<sup>a</sup> Department of Occupational and Environmental Health, University of Iowa, College of Public

Health, Iowa City, IA 52242, USA; <sup>b</sup> Department of Chemical Engineering,

University of Rhode Island, Kingston, RI, 02881, USA.

**Figure S1.** Partial phase diagrams of the DMPC-PFOA mixture obtained using TMA-DPH as fluorescence probe.

**Figure S2.** Partial phase diagrams of the DSPC-PFOA mixture obtained using TMA-DPH as fluorescence probe.

\* Corresponding Author: Dr. H.-J. Lehmler The University of Iowa Department of Occupational and Environmental Health 100 Oakdale Campus #221 IREH Iowa City, IA 52242-5000 Phone: (319) 335-4414 Fax: (319) 335-4290 e-mail: hans-joachim-lehmler@uiowa.edu



**Figure S1.** Partial phase diagrams of the DMPC-PFOA mixture obtained using TMA-DPH as fluorescence probe. As indicated by the arrow, all samples were cooled at a rate of  $0.2^{\circ}$ /minute. The data points represent averages of at least three experiments  $\pm$  one standard deviation.  $\blacksquare$  = onset of main phase transition;  $\blacktriangle$  = maximum of the main phase transition;  $\bullet$  = offset of the main phase transition.



**Figure S2.** Partial phase diagrams of the DSPC-PFOA mixture obtained using TMA-DPH as fluorescence probe. As indicated by the arrow, all samples were cooled at a rate of  $0.2^{\circ}$ /minute. The data points represent averages of at least three experiments  $\pm$  one standard deviation.  $\blacksquare$  = onset of main phase transition;  $\blacktriangle$  = maximum of the main phase transition;  $\bullet$  = offset of the main phase transition.