Supporting Information

Isom et al. 10.1073/pnas.0910421107

SI Text

Fabricated Synthetic Gene Sequences (ORFs). SN wild-type. CGGCGTAGAGGATCGAGATCTCGATCCCGCGAAAT-TAATACGACTCACTATAGGGGGAATTGTGAGCGGATAA-CAATTCCCCTCTAGAAATAATTTTGTTTAACTTTAA-GAAGGAGATATACCATGGCAACTTCTACTAAAAAATTA-CATAAAGAACCAGCAACTTTAATAAAAGCAATC-GATGGCGATACCGTCAAACTGATGTACAAAGGC-CAGCCGATGACCTTTAGACTGCTTCTGGTCGA-TACCCCTGAAACCAAACACCCGAAGAAAGGCGTG-GAAAAATACGGTCCGGAAGCATCAGCGTTCACCAA-GAAGATGGTCGAAAACGCGAAGAAGATCGAGGTA-GAATTCGACAAAGGCAACCGCACGGATAAA-TACGGTCGTGGTCTGGCATACATCTATGCGGACGG-CAAAATGGTGAACGAAGCACTGGTACGT-CAAGGTCTGGCAAAAGTCGCATACGTGTACAAACC-GAACAACACCCACGAACAGCATCTGCGTAAAAGC-GAAGCACAGGCGAAAAAGGAGAAGCTGAACATCTG-GAGCGAAGATAACGCAGATAGTGGCCAAG-GAGGCTCGGACTATAAAGACGACGACGACAAGTAA-TAAGAGATCCGGCTGCTAACAAAGCCCGAAAG-GAAGCTGAGTTGGCTGCTGCCACCGCTGAGCAATAAC-TAGCATAACCCCTTGGGGGCCTCTAAACGGGTCTTGAGG

ecRBP wild-type. CGGCGTAGAGGATCGAGATCTC-GATCCCGCGAAATTAATACGACTCACTATAGGG-GAATTGTGAGCGGATAACAATTCCCCTCTAGAAA-TAATTTTGTTTAACTTTAAGAAGGAGATATACCAT-GAAAGATTGGATTGCATTAGTAGTAAGTACACTCAA-TAATCCATTTTTCGTAAGTCTTAAAGACGGCGCC-CAAAAAGAAGCGGATAAACTGGGCTA-CAACCTTGTCGTGCTGGATAGCCAGAACAACCCGGC-CAAAGAACTGGCGAACGTTCAGGATCTGA-CAGTGCGTGGCACCAAAATTCTGCTGATCAACCC-GACCGATTCTGATGCAGTAGGCAACGCGGT-GAAAATGGCGAACCAGGCGAACATTCCGGTGAT-TACCCTGGATAGACAGGCGACCAAAGGA-G A A G T G G T T T C C C A T A T T G C G A G C G A -CAACGTTCTGGGCGGCGAAAATTGCGGGCGACTA-CATTGCCAAAAAGCGGGTGAAGGCGCGAAAGT-GATTGAACTGCAGGGTATTGCCGGAACGTCAGCAG-CACGTGAACGTGGTGAAGGTTTCCAGCAGGCAG-TAGCGGCGCATAAATTCAACGTTCTGGCCTCTCAGC CAGCTGATTTCGACCGCATTAAAGGCCTGAACGT-TATGCAGAACCTGCTGACGGCACATCCAGATGTA-CAGGCCGTGTTCGCGCAGAACGATGAAATGGCAT-TAGGCGCATTACGCGCACTGCAAACCGCAGG-TAAATCCGACGTGATGGTTGTAGGCTTTGATGG-TACCCCGGATGGTGAAAAAGCGGTTAACGACGG-CAAACTGGCAGCAACCATTGCCCAACTTCCGGATCA-GATTGGTGCGAAAGGCGTGGAAACCGCGGA-CAAAGTGCTGAAAGGCGAAAAAGTGCAGGCGAAA-TATCCGGTGGATCTGAAACTGGTAGTGAAACA-GAACGGCGGCTCTGATTACAAAGACGACGACGA-CAAATAATAAGAGATCCGGCTGCTAACAAAGCCC-GAAAGGAAGCTGAGTTGGCTGCTGCCACCGCTGAG-CAATAACTAGCATAACCCCTTGGGGGCCTC-TAAACGGGTCTTGAGG

ecMBP wild-type. CGGCGTAGAGGATCGAGATCTC-GATCCCGCGAAATTAATACGACTCACTATAGGG-GAATTGTGAGCGGATAACAATTCCCCTCTAGAAA-

TAATTTTGTTTAACTTTAAGAAGGAGATATACCAT-GAAAATCGAAGAAGGCAAACTGGTTATATGGAT-TAATGGTGATAAAGGTTATAACGGTCTGGCG-GAAGTGGGCAAAAAATTCGAGAAAGACACCGGCAT-CAAAGTGACCGTTGAACATCCGGACAAACTGGAGGA-GAAATTCCCACAAGTTGCAGCAACAGGCGACGGTCCT-GATATCATATTCTGGGCGCATGATCGTTTTGGCGGA-TACGCACAATCAGGCTTACTGGCCGAAATTACCCCG-GATAAAGCGTTCCAAGACAAACTGTACCCGTT-TACCTGGGACGCTGTTCGCTATAACGGGAAACT-GATCGCCTACCCAATTGCAGTCGAAGCACTGTCCCT-GATCTACAACAAAGATCTGCTGCCGAATCCGCC-GAAAACATGGGAAGAAATCCCGGCGCTGGATAAA-GAACTGAAAGCGAAAGGCAAAAGCGCACTGATGTT-CAACCTTCAGGAACCGTACTTCACCTGGCCACTTATTG-CAGCAGACGGCGGTTATGCCTTCAAATACGAGAACGG-CAAGTACGACATCAAAGACGTCGGAGTGGATAACG-CAGGTGCAAAAGCAGGTCTGACCTTCCTGGTCGACCT-CATCAAAAACAAGCACATGAACGCCGATACCGATTA-TAGCATCGCGGAAGCAGCGTTTAACAAAGGC-GAAACCGCGATGACCATTAACGGACCATGGGCCTG-GAGCAACATTGACACCTCCAAAGTGAACTACGGCG-TAACCGTACTGCCAACCTTTAAAGGCCAGCCGAG-CAAACCATTCGTAGGCGTACTGTCAGCAGGTATTAACG-CAGCAAGCCCGAACAAAGAACTGGCGAAG-GAATTCCTGGAAAAACTACCTGCTGACCGAT-GAAGGTCTGGAAGCCGTGAACAAAGA-TAAACCGCTGGGCGCAGTTGCACTGAAAAGCTACGAA-GAAGAACTGGCGAAAGATCCGCGTATTGCAGCAAC-CATGGAAAACGCGCAGAAAGGCGAAATCATGCCGAA-CATTCCTCAGATGAGCGCTTTCTGGTATGCAGTTCG-CACCGCCGTTATTAACGCAGCATCTGGTCGTCAAACCG-TAGACGAAGCGCTGAAAGATGCACAGACGCGCATCAC CAAAGGCGGCAGCGATTACAAAGATGACGATGA-CAAGTAATGAGAGATCCGGCTGCTAACAAAGCCC-GAAAGGAAGCTGAGTTGGCTGCTGCCACCGCTGAG-CAATAACTAGCATAACCCCTTGGGGGCCTC-TAAACGGGTCTTGAGG

Derivation of ΔG_{bind} for Proteins with Single and Multiple Ligand-Binding Sites. For a macromolecule with a single binding site, the relative concentrations of unliganded and liganded species is described by the binding polynomial

$$P = \left(1 + \frac{[L]}{K_D}\right).$$
 [S1]

The expression for a single-site binding isotherm is derived from the differentiation of $\ln(P)$ with respect to $\ln(L)$ using the chainrule

$$\bar{X} = \frac{d\ln P}{d\ln L} = \frac{d\ln P}{dP} \cdot \frac{dP}{dL} \cdot \frac{dL}{d\ln L} = \frac{K_A[L]}{1 + K_A[L]} = \frac{\frac{|L|}{K_D}}{1 + \frac{|L|}{K_D}}, \quad [S2]$$

where \bar{X} is the number of moles of ligand bound per mole of macromolecule and K_A and K_D are the relevant equilibrium constants for the law of mass action

$$M + L \rightleftharpoons ML;$$
 [S3]

$$K_A = \frac{[ML]}{[M][L]}; \qquad [S4]$$

$$K_A = \frac{1}{K_D}.$$
 [S5]

 \tilde{X} expressed in differential form provides the conceptual link between a ligand-binding isotherm and the free energy of ligand binding (ΔG_{bind}); the area underneath a plot of \tilde{X} versus $\ln(L)$ is proportional to the free energy of binding. ΔG_{bind} is obtained by integrating the area under the binding isotherm (i.e. by integrating Eq. **S2**) and multiplying by the proportionality constant *RT*

$$\Delta G_{\text{bind}} = RT \int \bar{X} d\ln L = RT \int d\ln P = RT \ln P + \Delta G_{\text{ref}},$$
[S6]

where ΔG_{ref} is the reference free energy of the macromolecule in the absence of ligand. In the specific case of a single binding site, Eq. **S6** is expressed as

SANG SANG

$$\Delta G_{\text{bind}} = RT \ln P = RT \ln \left(1 + \frac{[L]}{K_D}\right) + \Delta G_{\text{ref}}.$$
 [S7]

In cases where a macromolecule binds more than one ligand, the expression for ΔG_{bind} is more complex. Consider for example the binding of Ca²⁺ and pdTP (a nucleotide inhibitor) to the enzyme *Staphylococcal* nuclease (SN). Reaction schemes **S8** thru **S13** describe the formation of the relevant binary and ternary complexes of an enzyme (E) combined with ligands A (Ca²⁺) and B (pdTP).

$$E + A \rightleftharpoons EA;$$
 $K_1 = \frac{[EA]}{[E][A]};$ $K_1 = 90 \ \mu M.$ [S8]

$$E + B \rightleftharpoons EB;$$
 $K_2 = \frac{[EB]}{[E][B]};$ $K_2 = 500 \ \mu\text{M}.$ [S9]

$$EA + B \rightleftharpoons EAB;$$
 $K_3 = \frac{[EAB]}{[EA][B]};$ $K_3 = 20 \ \mu\text{M}.$ [S10]

$$EB + A \rightleftharpoons EAB;$$
 $K_4 = \frac{[EAB]}{[EB][A]};$ $K_4 = 2.5 \ \mu\text{M}.$ [S11]

$$E + AB \rightleftharpoons EAB;$$
 $K_5 = \frac{[EAB]}{[E][AB]};$ $K_5 = 2.2 \ \mu\text{M}.$ [S12]

$$A + B \rightleftharpoons AB;$$
 $K_6 = \frac{[AB]}{[A][B]}.$ [S13]

The binding of Ca²⁺ and pdTP to SN is fully described by

$$P = 1 + \frac{[A]}{K_1} + \frac{[B]}{K_2} + \frac{[A][B]}{K_1K_3} + \frac{[B][A]}{K_2K_4} + \frac{[AB]}{K_5},$$
 [S14]

and ΔG_{bind} is described by

$$\Delta G_{\text{bind}} = RT \ln \left(1 + \frac{[A]}{K_1} + \frac{[B]}{K_2} + \frac{[A][B]}{K_1 K_3} + \frac{[B][A]}{K_2 K_4} + \frac{[AB]}{K_5} \right) + \Delta G_{\text{ref}}.$$
[S15]

It has been shown that Ca²⁺ and pdTP bind synergistically to SN. Consequently, the dissociation constant K_5 can be determined independent of the dissociation constants K_1 , K_2 , K_3 , and K_4 by measuring the ligand binding energetics of SN at concentrations of [AB] below K_1 , K_2 , and K_3 (i.e., 3–24 μ M). This approach simplifies Eq. **S15** considerably,

$$\Delta G_{\text{bind}} = RT \ln\left(1 + \frac{[AB]}{K_5}\right).$$
 [S16]

Fig. S2. Determination of k_{int} in model compounds and unfolded SN. (*A*) Progress curves for the reaction of 80 µM IAM-biotin with 800 µM reduced *L*-glutathione (GSH) at different temperatures in 25 mM MOPS, 100 mM KCl, and pH 7.6. Pseudo-first-order rate constants (k_{int}) derived from these data: 6.2×10^{-4} (25 °C), 1.6×10^{-4} (35 °C), 3.5×10^{-3} (45 °C), and 7.7×10^{-3} (55 °C) s⁻¹; second-order rate constants (i.e. $k = k_{int}/[\text{GSH}]$) of 7.8×10^{-1} , 2.0, 4.4, and 9.6 M⁻¹ s⁻¹, respectively. (*B*) Arrhenius plot of the second-order rate constants for the bimolecular reaction of IAM-biotin and GSH. (*C*) Representative QCR curves at 50 °C for unfolded SN variants L36C (purple; $k_{int} = 3 \times 10^{-3} \text{ s}^{-1}$) and F34C (black; $k_{int} = 2 \times 10^{-3} \text{ s}^{-1}$) at 438 µM IAM-biotin, ~0.1 µM protein, 25 mM MOPS, 100 mM KCl, and pH 7.6.

Fig. S3. An illustrative test of EX2 conditions for SN variants F34C and L36C at 38.3 °C. The change in observed rate constant for labeling of these protected cysteines is proportional to the change in concentration of IAM-biotin (black: 3 mM; lighter blue: 1.1 mM; darker blue: 0.3 mM). k_{label} at 3, 1.1, and 0.3 mM IAM-biotin for Cys-34: 2.3 × 10⁻³ s⁻¹, 9.2 × 10⁻⁴ s⁻¹, and 2.8 × 10⁻⁴ s⁻¹, respectively; for Cys-36: 3.0 × 10⁻³ s⁻¹, 1.0 × 10⁻³ s⁻¹, and 3.5 × 10⁻⁴ s⁻¹, respectively.

Table 51. Temperature dependence of ΔG_{II} for variants of 5N and eccord	Table S1.	. Temperature	dependence (of ∆G ₁₁ fo	or variants of	SN and ecRBP
---	-----------	---------------	--------------	------------------------	----------------	--------------

Variant	Т°С	[IAM] [M]	$k_{\rm int}~{\rm s}^{-1}$	$k_{\mathrm{ex}}~\mathrm{s}^{-1}$	$\Delta G \text{ kcal mol}^{-1}$
SN.F34C	26.3	3.16E-03	2.82E-03	6.10E-05	2.3
SN.F34C	29.3	3.16E-03	3.69E-03	1.10E-04	2.1
SN.F34C	32.3	1.00E-03	1.53E-03	8.00E-05	1.8
SN.F34C	35.3	1.00E-03	1.98E-03	2.60E-04	1.2
SN.F34C	38.3	1.00E-03	2.55E-03	7.20E-04	0.6
SN.F34C	40.3	1.00E-03	3.02E-03	1.30E-03	0.2
SN.L36C	23.3	3.16E-03	2.14E-03	3.10E-05	2.5
SN.L36C	26.3	3.16E-03	2.82E-03	7.20E-05	2.2
SN.L36C	29.3	3.16E-03	3.70E-03	1.50E-04	1.9
SN.L36C	32.3	1.00E-03	1.53E-03	1.20E-04	1.5
SN.L36C	35.3	1.00E-03	1.98E-03	3.60E-04	0.9
SN.L36C	38.3	1.00E-03	2.55E-03	9.20E-04	0.4
ecRBP.L62C	44.5	1.00E-03	4.26E-03	2.00E-04	1.9
ecRBP.L62C	45.2	1.00E-03	4.50E-03	2.60E-04	1.8
ecRBP.L62C	47.1	1.00E-03	5.25E-03	5.20E-04	1.4
ecRBP.L62C	48.9	1.00E-03	6.05E-03	9.30E-04	1.1
ecRBP.L62C	51.7	1.00E-03	7.53E-03	1.90E-03	EX1, 0.7
ecRBP.L62C	54.6	1.00E-03	9.19E-03	2.60E-03	EX1, 0.6
ecRBP.A188C	45.2	1.00E-03	4.50E-03	1.10E-04	2.3
ecRBP.A188C	47.1	1.00E-03	5.25E-03	1.80E-04	2.1
ecRBP.A188C	48.9	1.00E-03	6.05E-03	5.10E-04	1.5
ecRBP.A188C	51.7	1.00E-03	7.53E-03	1.50E-03	0.9
ecRBP.A188C	54.6	1.00E-03	9.19E-03	3.70E-03	0.3

U

	-	-		-			
Variant	[Ligand] µM	Т°С	[IAM] [M]	$k_{\rm int}~{\rm s}^{-1}$	$k_{\rm ex}~{ m s}^{-1}$	ΔG kcal mol ⁻¹	$\Delta\Delta G$ kcal mol ⁻¹
SN.F34C	0	35.3	1.00E-03	1.98E-03	2.62E-04	1.2	0
SN.F34C	3	35.3	1.00E-03	1.98E-03	1.82E-04	1.4	0.3
SN.F34C	6	35.3	1.00E-03	1.98E-03	1.35E-04	1.6	0.5
SN.F34C	12	35.3	1.00E-03	1.98E-03	8.60E-05	1.9	0.7
SN.F34C	24	35.3	1.00E-03	1.98E-03	4.60E-05	2.3	1.1
SN.L36C	0	35.3	1.00E-03	1.98E-03	3.60E-04	0.9	0
SN.L36C	3	35.3	1.00E-03	1.98E-03	1.80E-04	1.4	0.5
SN.L36C	6	35.3	1.00E-03	1.98E-03	1.30E-04	1.6	0.7
SN.L36C	12	35.3	1.00E-03	1.98E-03	6.10E-05	2.1	1.2
SN.L36C	24	35.3	1.00E-03	1.98E-03	3.40E-05	2.5	1.6
ecRBP.L62C	0	48.9	1.00E-03	6.05E-03	9.90E-04	1.0	0
ecRBP.L62C	1.5	48.9	1.00E-03	6.05E-03	5.10E-04	1.5	0.5
ecRBP.L62C	3	48.9	1.00E-03	6.05E-03	3.60E-04	1.8	0.7
ecRBP.L62C	6	48.9	1.00E-03	6.05E-03	1.90E-04	2.2	1.2
ecRBP.L62C	12	48.9	1.00E-03	6.05E-03	1.10E-04	2.6	1.5
ecRBP.L62C	24	48.9	1.00E-03	6.05E-03	9.10E-05	2.7	1.6
ecRBP.A188C	0	54.6	1.00E-03	9.40E-03	2.1/E-03	0.8	0
ecRBP.A188C	1.5	54.6	1.00E-03	9.40E-03	1.41E-03	1.1	0.3
ecRBP.A188C	3	54.6	1.00E-03	9.40E-03	9.70E-04	1.4	0.6
ecRBP.A188C	6	54.6	1.00E-03	9.40E-03	7.30E-04	1.6	0.8
ecRBP.A188C	12	54.6	1.00E-03	9.40E-03	3.20E-04	2.2	1.4
ecRBP.A188C	24	54.6	1.00E-03	9.40E-03	1.90E-04	2.5	1.7
	0	62.2	1.005.03	1 705 02	5 10E 04	2.4	0
ocMBPT157C	6	63.3	1.002-03	1.79E-02	2 50E-04	2.4	05
ocMBPT157C	12	63.3	1.002-03	1.79E-02	2.30L-04	2.5	0.5
ocMBDT157C	2/	63.3	1.00E-03	1.79E-02	1 305-04	22	0.7
ocMBPT157C	/8	63.3	1.00E-03	1.79E-02	9 10E-05	3.5	1.2
ecivibr.1157C	40	05.5	1.002-05	1.792-02	9.102-05	5.5	1.2
ecMBP.S263C	0	63.3	1.00E-03	1.79E-02	5.30E-04	2.3	0
ecMBP.S263C	6	63.3	1.00E-03	1.79E-02	3.50E-04	2.6	0.3
ecMBP.S263C	12	63.3	1.00E-03	1.79E-02	2.60E-04	2.8	0.5
ecMBP.S263C	24	63.3	1.00E-03	1.79E-02	1.60E-04	3.2	0.8
ecMBP.S263C	48	63.3	1.00E-03	1.79E-02	1.20E-04	3.4	1.0

PNAS PNAS