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CorrelatedMotions Between Secondary Structure Elements.Coupling
between switch 1 and the relay helix is shown in Fig. S1. An S
shape plot suggests that the relay helix moves first, then SW1
takes the (sequential) lead and finally the relay helix completes
its’ own motion. This S shaped motion may be related to the
seesaw model of Fischer et al. (ref. 12). The specific sequential
mechanism observed at room temperature trajectories (within
the Milestoning approximation) supports the picture of a direct
and mechanical path which is preserved even with significant
thermal noise (Fig. S1).

Another correlated motion worth examining is of switch 2
(internal RMSD) and the relay helix. Similarly to the P-loop
(Fig. 4A), switch 2 shows early relaxation to its final
state (Fig. S2).

Connection Between Milestoning and Nonequilibrium Theory. Eq. S1
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where PsðtÞ is the probability that the last Milestone the system
crossed is s. In our example of a reaction coordinate the system is
found between Milestones s� 1. The density QsðtÞ is the prob-
ability that Milestone s is passed exactly at time t. The input
for the above equation is the calculated (from trajectories)
Kss0 ðtÞ and the initial distribution Psð0Þ. The above equation is
formally equivalent to the Generalized Master Equation
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where the Laplace transform of the memory kernel Γss0 ðtÞ is
directly related to the Laplace transform of the kernel Kss0 ðtÞ,
Γss0 ¼ uKss0 ðuÞ

1−Kss0 ðuÞ (the Laplace transform of a function GðtÞ is:

ðGðuÞ ¼ ∫ ∞
0 expð−utÞGðtÞdtÞ). Initial conditions are sampled

from a stationary distribution at s. Instead of solving [equation 1]
directly it is possible to calculate moments in time. The first
moment is the Mean First Passage Time (MFPT). The inverse
of the MFPT is the usual rate constant for exponential kinetics
(refs. 21, 23, 24)
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An alternative view of Milestoning with exact limit is discussed
in ref. 24.

Computing the Kernel. We estimate the elements of the kernel
(Ks;sþ1ðτÞ or Ks;s−1ðτÞ) in two steps. We (i) initiate trajectories
at Milestone s and (ii) propagate the trajectories in time until they
terminate at Milestones s� 1 (Fig. 1).

Initial conditions. The preparation of the initial conditions at
Milestone s is approximate. The initial conditions are sampled
from the canonical ensemble constrained to be at s (pðX jsÞ ∝
expð−βUðX jsÞÞ β ¼ 1∕kBT where kB is the Boltzmann constant

and T the absolute temperature). In principle a complete trajec-
tory from reactants to products should be computed; instead we
assume loss of memory between Milestones (and stationary
distribution in s). In ref. 24 this approximation was discussed
in the context of overdamped Langevin dynamics. A
crrection for the present study (the curvature of the reaction co-
ordinate) was examined numerically and found to be small (a few
percent).

Trajectories between Milestones. Let the number of structures
sampled at Milestone s be L. Each of the L coordinates is a start-
ing point of a trajectory that is no longer constrained to s. The
trajectories are terminated when they reach the hyperplane sþ
1 (or s − 1) and their arrival times, τsl l ¼ 1;…; L, are recorded.
Binning the termination events provides estimates of Ksþ1;sðτÞ (or
Ks−1;sðτÞ). While possible (ref. 21) the direct calculation of the
Kernel is statistically demanding. It is easier to compute the zero
and the first moments of the kernel that are sufficient to compute
the MFPT Eq. S3. For the zero moment we have ∫ ∞

0 Ksþ1;sðτÞdτ;
ð1∕LÞlimτ→∞ ∑L

l¼1 GðXðτÞ; sþ 1Þ w h e r e limτ→∞GðXðτÞ; yÞ i s
equal one if X ∈ y and zero otherwise. The expression for τ̄s
(the average termination times of Milestoning trajectories in-
itiated at s) is τ̄s ¼ ∫ ∞

0 τ∑s0¼sþ1;s−1 Ks0;sðτÞ:dτ≅ð1∕LÞ∑L
l¼1 τsl.

The zero moment and τ̄s of all Milestones are sufficient to deter-
mine the overall MFPT.

Numerical Implementation of the Reaction Path Calculations (Unnum-

bered Main Text Equation F½XðlÞ� ¼ ∫ Xp
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reaction path is a function of the subset of coordinates q. For
myosin q includes all the Cα coordinates. For numerical compu-
tations the path is discretized to have S structures fXigSi¼1 and the
functional becomes F ≈∑s
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p
. The functional is minimized subject to

path and Eckart constraints (refs. 25, 26). The outputs of these
calculations are the Milestones or hyperplanes perpendicular to
the reaction coordinate. (Milestones) are defined with two vec-
tors. Each Milestone s is determined by a vector qs in the plane
and by a unit vector ês perpendicular to hyperplane
s ês ≈ ðXsþ1 − Xs−1Þ∕jXsþ1 − Xs−1j.

Milestoning and Molecular Dynamics Simulations. All water mole-
cules (TIP3P or SPC/E, we repeated the calculation with the
two water models) are kept rigid with a matrix variant (ref. 31)
of the SHAKE algorithm (ref. 32). Long range electrostatic is
calculated with Particle Mesh Ewald (ref. 33), and the time step
was 1 femtosecond using the Velocity Verlet algorithm. Config-
urations of the first 40 picoseconds are ignored and structures are
saved each 0.2 ps in the rest of the simulation (40 ps). Note that
the sampling is not to cover the complete 3N-1 configuration
space but rather to explore the neighborhood of the reaction co-
ordinate. Milestoning evaluates a proposed reaction coordinate
(and a reaction mechanism). The total number of structures
sampled in each Milestone is 200.

Computational Efficiency. The calculations of the transition kernel
Kss0 ðτÞ are the bottleneck of he simulations. Nevertheless, they
are considerably cheaper than straightforward Molecular
Dynamics (MD) simulations and in some cases exponentially fas-
ter (in the number of Milestones). Different speed up factors
were discussed elsewhere (refs. 20, 21). Here we consider one
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case that provides exponential speed up. Consider the passage
over a barrier of height B. In a usual MD simulation the prob-
ability of reaching the top of the barrier would be proportional
to expð−βBÞ and the time to reach the top will scale like
expðþβBÞ. The use of M milestones along the barrier split the
process to independent calculations each with a barrier to cross
of order of. The transition time between two Milestones is there-
fore proportional to expðβB∕MÞ B∕M, which is proportional to
the time required to estimate Kss0 ðτÞ (depending on the number
of trajectories that are used to generate the sample). The total
time of the transitions for the M milestones M expðβB∕MÞ.
Hence the speed up in this case is exponential in the number
of Milestones.

The concrete application to Myosin is discussed below. The
length of a typical myosin trajectory between Milestones is in
picoseconds. A few Milestones have τ̄s of tens of picoseconds.
Overestimating the average local transition times at 10 picose-
conds, the total computational time (on a single core to generate
a single “connected” trajectory from reactants to protducts) is es-
timated as 10 ps × 200 trajectories × 240 milestonesþ 80 ps×
240 sampling ¼ 499; 200 ps.

This is less than a half of a microsecond. Of course the trajec-
tories are trivially run in parallel, which significantly shortens the
clock time. We have employed in the calculations about
1,000 cores; each core simulates trajectories for about a nanose-
cond. A nanosecond is a factor of million shorter than the time
scale of simulating directly a single event of recovery stroke.
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Fig. S1. Correlation of the relay helix center of mass motion and switch 1 internal RMSD.
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Fig. S2. Correlation of the relay helix and switch 2.

Elber and West www.pnas.org/cgi/doi/10.1073/pnas.0909636107 2 of 2

http://www.pnas.org/cgi/doi/10.1073/pnas.0909636107

