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Here we further describe our modeling approach. We provide a
detailed description of the two-mass model for the organ of Corti
and discuss the energy balance. We then turn to the hydrody-
namics of the cochlea. Because our goal is to demonstrate a prin-
ciple rather than to describe the cochlea in full detail, we focus on
a basic, one-dimensional model. We conclude with a model for
the regulation of the OHCs’ membrane potential, which demon-
strates how the critical mechanomotility coefficient α� can result.

Micromechanics of the Organ of Corti. To describe the micromecha-
nics of the organ of Corti we employ a model with two degrees of
freedom: the motion of the basilar membrane and the motion of
the hair-bundle complex (Fig. 2B). The impedance ZBM of the ba-
silar membrane results from a mass mBM, viscous damping λBM,
and stiffnessKBM. Similarly, the impedance of the complex formed
by the hair bundles, reticular lamina, and tectorial membrane in-
volves mass mTM, viscous damping λHB, and stiffness KHB.

The motions of the basilar membrane and of the hair-bundle
complex are coupled through the impedance ZC of the organ of
Corti, which possesses viscous and elastic contributions λC and
KC. Further coupling arises through the combined OHCs and
Deiters’ cells (Fig. S1). An OHC can be described as a piezoelec-
tric element (1). Its length change δL depends both on a change
δV in the membrane potential as well as on the applied force F.
Considering oscillatory motions at angular frequency ω ¼ 2πf
we can write δL ¼ fδLeiωt þ c:c:; δV ¼ fδVeiωt þ c:c:, and F ¼eFeiωt þ c:c: in which c:c denotes the complex conjugate. The
length change then follows as

fδL ¼ −cfδV þ c2eF [S1]

with coefficients c; c2. We define ~XEE ¼ −cfδV as the part of the
length change that results from voltage changes alone. The length
change c2eF results from the OHC’s viscoelasticity ZOHC ¼
−iω−1c−12 in series with XEE (Fig. S1). It lies in series with the
Deiters’ cell which can be described as another viscoleastic ele-
ment ZDC. The two viscoelastic elements ZOHC and ZDC in series
combine into the viscoelastic element

ZD ¼ ðZ−1
OHC þ Z−1

DCÞ−1 [S2]

such that the schematic of Fig. 2B results. We denote by KD the
elastic component and by λD the viscous part of the impedance
ZD. The equations of motion for hair-bundle and basilar-
membrane displacement, XHB and XBM, respectively, then read

mTM∂2t XHB þ λHB∂tXHB þ KHBXHB

þ ðKD þ λD∂tÞðXHB − XEE − XBMÞ
þ ðKC þ λC∂tÞðXHB − XBMÞ
¼ Fint; [S3]

mBM∂2t XBM þ λBM∂tXBM þ KBMXBM

− ðKD þ λD∂tÞðXHB − XEE − XBMÞ
− ðKC þ λC∂tÞðXHB − XBMÞ
¼ Fext: [S4]

A sound stimulus at angular frequency ω provides an external
force Fext on the basilar membrane whose dependence on time
t may be written as FextðtÞ ¼ ~Fexteiωt þ c:c: with the Fourier coef-
ficient ~Fext. The evoked oscillations of the basilar membrane,
XBM, and of the hair-bundle complex, XHB, occur dominantly
at the same frequency f ; additional frequencies may arise from
nonlinear effects owing to internal forces in the hair bundle.
We consider the corresponding Fourier coefficients ~XBM and
~XHB. The electrically evoked length change ~XEE of OHCs
depends linearly on the hair-bundle displacement, for the
membrane-potential change depends linearly on hair-bundle mo-
tion (see Supplementary Section on the electrical regulation of
the OHC membrane potential): ~XEE ¼ −α ~XBM with a complex,
frequency-dependent mechanomotility coefficient α. Eq. S4 then
yields Eqs. 1 and 2 with

ZHB ¼ iωmTM þ λHB − iω−1KHB; [S5]

ZBM ¼ iωmBM þ λBM − iω−1KBM; [S6]

ZC ¼ λC − iω−1KC; [S7]

ZD ¼ λD − iω−1KD: [S8]

The forces within the hair bundle depend on its displacement;
their effect is to counter viscous damping as well as to influence
the resonant frequency of the hair-bundle complex. We may de-
compose these forces into linear and nonlinear parts:

~Fint ¼ iωZact
HB

~XHB þ ~Fnonlin
int ð ~XHBÞ: [S9]

Here the linear term dominates the dynamics for small displace-
ments ensuing from weak sound stimuli and describes the fully
active scenario. The nonlinear term connects the active to the
passive case that arises for strong sound stimuli.

At the critical value α�, the displacements are given by Eq. 3,
which can be rewritten using Eq. S9 as

~XHB ¼ 1

iωðZHB − Zact
HBÞ

~Fnonlin
int ð ~XHBÞ

þ ZD þ ZC

iωðZHB − Zact
HBÞðZBM þ ZD þ ZCÞ

~Fext; [S10]

~XBM ¼ 1

iωðZBM þ ZD þ ZCÞ
~Fext: [S11]

Resonance in hair-bundle motion occurs at the frequency
for which ZHB − Zact

HB ¼ 0. Active hair-bundle motility makes this
situation possible. As discussed in the main text, this reso-
nance condition is independent of the properties of the basilar
membrane.

Cochlear Hydrodynamics and Traveling Waves. We now incorporate
the description for the micromechanics of the organ of Corti
into a model for the whole cochlea. In the simplest form, the co-
chlea is considered as one-dimensional, exhibiting a slow pres-
sure wave. Combining continuity equations and fluid-momentum
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equations, this pressure wave obeys the partial differential
equation

ρ∂2t XBM þ Λ∂tXBM ¼ 1

2L2
∂rðh∂rpÞ: [S12]

Here ρ denotes the density of liquid in the cochlea, L the length
of the cochlea, h the height of the scalae, and p and XBM respec-
tively the pressure across and the displacement of the basilar
membrane at position r and time t. The coefficient Λ accounts
for friction due to fluid motion. Position is measured in units
of the cochlear length, such that r ¼ 0 corresponds to the basal
and r ¼ 1 to the apical end. We apply two boundary conditions.
First, p ¼ p0 at r ¼ 0: a sound-evoked pressure p0 acts at the
stapes. And second, p ¼ 0 at r ¼ 1: because the two scalae com-
municate at the helicotrema, the pressure difference between
them vanishes at the apical end of the cochlea.

Considering the Fourier coefficients of angular frequency ω,
we obtain

−ω2ρ ~XBM þ iωΛ ~XBM ¼ 1

2L2
∂rðh∂r ~pÞ: [S13]

The basilar-membrane displacement ~XBM and pressure ~p are con-
nected through Eq. 1, with ~p ¼ ~Fext∕ABM. ABM denotes the area
of a transverse strip of the basilar membrane that has the width of
one cell, about 8 μm; all parameters employed in the two-mass
model refer to a transverse segment of the cochlear partition
of that width. We solve Eq. S13 numerically with the shooting
method in Mathematica 7 (Wolfram Research).

The height h of the scalae varies from about 1 mm at the base
to about 200 μm at the apex. Measurements of the fluid pressure
in the basal region indicate, however, that the penetration depth
of the wave is significantly smaller (2). In our one-dimensional
simulations, we therefore use an effective height of 100 μm.

Concerning the map of characteristic frequencies f 0ðrÞ along
the cochlea, we consider the chinchilla’s hearing range from a
maximal frequency of about 30 kHz at the extreme base to a mini-
mum of about 50 Hz at the extreme apex (3). We assume that the
resonant frequency of the basilar membrane cannot cover this
whole range and is instead given by

fBMðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2BM;apex þ ½1 − ðfBM;apexÞ∕fmaxÞ2�f 0ðrÞ2

q
: [S14]

Here fmax ¼ 30 kHz denotes the highest characteristic frequency
and fBM;apex ¼ 1 kHz the lowest resonant frequency that the ba-
silar membrane exhibits. fBM coincides with f 0 for high frequen-
cies but deviates for frequencies below fL and approaches fBM;apex
in the apical region of the cochlea (Fig. 3B).

The resonant frequency fBM of the basilar membrane is set by
its mass and stiffness according to fBM ¼ ð2πÞ−1 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

KBM∕mBM
p

. We
consider KBM to vary proportional to fBM and mBM to vary
inversely: KBMðrÞ ¼ Kmax

BM fBMðrÞ∕fmax and mBMðrÞ ¼ KBMðrÞ∕
½2πfBMðrÞ�2, with Kmax

BM ¼ 2 N·m−1. The mass mTM of the tectorial
membrane is assumed to follow the same spatial variation as
the basilar membrane masses, albeit with a smaller value: mTM ¼
mBM∕5. The increase in the basilar-membrane and tectorial-
membrane masses from base to apex presumably reflects the in-
creasing size of the organ of Corti towards the apex.

For the variation of the mechanomotility coefficient α along
the cochlea, and its dependence on the stimulus frequency f ,
we make the ansatz

αðr; f Þ ¼ f 4c
f 4c þ f 0ðrÞ4

×
½δf ðrÞf 0�2

½f 2 − f 0ðrÞ2�2 þ ½δf f 0ðrÞ�2
× α�: [S15]

The first factor accounts for the high-frequency cutoff above
which the membrane potential, and thus electromotility, can

no longer follow hair-bundle displacement on a cycle-by-cycle ba-
sis; we use f c ¼ 4 kHz. To yield the ratchet mechanism at lower
frequencies, we choose α to be α� at the natural frequency. The
second factor describes how the response changes when the fre-
quency f of stimulation deviates from the natural frequency f 0; we
assume that α is close to α� as long as both frequencies are similar,
but otherwise declines in magnitude. The width of the corre-
sponding curve is determined by the parameter δ, which we
set at δ ¼ 2. The mechanomotility coefficient αðr; f ¼ f 0Þ is
shown in Fig. 3A.

The linear part of the active hair-bundle force counters viscous
damping and provides a vanishing impedance at the natural fre-
quency. Using Eqs. 1, 2, and S9, this translates into

ZHB − Zact
HBjf¼f 0 ¼ −

ZBM½ð1þ αÞZD þ ZC�
ZBM þ ZC þ ZD

�����
f¼f 0

: [S16]

We assume that the imaginary part of ZHB is tuned to the natural
frequency f 0 such that the active contribution possesses only a
real part corresponding to negative damping, Zact

HB ≡ λactHB. Note
that in the ratchet mechanism, when α ¼ α�, the right-hand side
of Eq. S16 vanishes, so active hair-bundle forces need to over-
come only damping associated with hair-bundle motion.

When α and active hair-bundle forces obey Eqs. S15 and S16
and nonlinearities from the hair-bundle forces are ignored, the
hair-bundle displacement diverges at resonance. In the actual
cochlea, noise as well as nonlinearities supervene and lead to
a large but finite displacement. In our simulations, we incorpo-
rate this effect by considering values for α and Zact

HB that deviate by
1% from their ideal values given by Eqs. S15 and S16.

Tuning Curves of Auditory-Nerve Fibers Tuning curves of auditory-
nerve fibers are computed by assuming that the hearing threshold
corresponds to a root-mean-square deflection of the hair bundles
of IHCs by 0.3 nm. These bundles are thought to be coupled by
fluid motion to the shearing between the reticular lamina and
tectorial membrane, and thus to the displacement of the hair
bundles of OHCs. Assuming that the displacement X IHB of
the hair bundles of inner hair cells is dependent on friction
λIHB and elasticity K IHB, it couples to the OHCs’ bundle motion
through the relation

λIHB∂tðX IHB − XHBÞ þ K IHBX IHB ¼ 0. [S17]

Upon Fourier transformation, we obtain

~X IHB ¼ iωλIHB

iωλIHB þ K IHB

~XHB: [S18]

For high frequencies, viscous coupling is strong and the hair-bun-
dle displacements of IHCs and OHCs coincide. For low frequen-
cies, the coupling decreases and the hair-bundle motion of IHCs
remains smaller than that of OHCs. This effect underlies the ris-
ing thresholds at low frequencies seen on the left limbs of high-
frequency tuning curves (Figure 5) as well as in experimental
measurements.

The value of 0 dB SPL is defined by a root-mean-square sound-
pressure stimulus of 20 μPa. Because this external pressure is en-
hanced by the middle ear before acting on the stapes, we assume
an increase by a factor of 20 (26 dB) (9).

If they have not been detailed in the text above, the parameters
of the two-mass model as well as the one-dimensional descrip-
tions of the cochlea and hair-bundle dynamics of IHCs are given
in Table S1.

Electrical Regulation of the OHC Membrane Potential. Deflection
XHB of the OHCs hair bundles evokes a change δV ≡ V − V 0

in the membrane potential from its resting value V 0, which leads
to a length change XEE ¼ −cδV (see Eq. S1 and below) with a
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coefficient c of about 20 μm · V−1 (1). The ratchet mechanism
relies on a critical value α� ¼ −1 − ZC∕ZD of the ratio
α ¼ −XEE∕XHB between hair-bundle displacement and cell
length change. While its exact value depends on the coupling im-
pedances ZC and ZD, the real part of α� is negative. A typical
situation ZC ¼ ZD leads to the critical value α� ¼ −2. Here we
show how such a value of α� can emerge within a basic model
for the regulation of the OHCs membrane potential. The model
relies on voltage-regulated outward Kþ channels (10) that coun-
teract the current through the membrane capacitance, as well as a
voltage-regulated inward sodium current (11, 12) that can lead to
hyperpolarization upon positive hair-bundle deflection.

The apical surface of an OHC, including the hair bundle, is
bathed in endolymph at a potential VE of about 80 mV (Fig. S2).
The basolateral part is surrounded by perilymph at ground poten-
tial VP. The electrical behavior can be represented by a simple
circuit described by an equation for current conservation:

IRa
¼ IRb

þ ICb
: [S19]

Here IRa
denotes the current through the resistance Ra and IRb

and ICb
denote the currents through Rb and Cb, respectively. We

assume that Ra results from the conductivity ga of the mechano-
transduction channels in the hair bundle; the current is mainly
carried by Kþ ions (13). The conductance of the basolateral cell
membrane stems from voltage-regulated Kþ channels (conduc-
tance gKb ) as well as voltage-regulated Naþ channels (11, 12) (con-
ductance gNa

b ). We obtain

gaðVE − V Þ ¼ Cb∂tV þ gKb ðV − VPÞ − gNa
b ðVNa − V Þ [S20]

in which VNa denotes the Naþ reversal potential and Cb the cell
membrane’s capacitance. The potential V 0 inside the cell at van-
ishing hair-bundle displacement XHB ¼ 0 follows as

V 0 ¼
gð0Þa VE þ gNað0Þ

b VNa þ gKð0Þ
b VP

gð0Þa þ gNað0Þ
b þ gKð0Þ

b

[S21]

in which the superscript ð0Þ denotes the respective conductances
at vanishing hair-bundle displacement.

Hair-bundle displacement XHB changes the conductance ga of
the cell’s apical membrane. To linear order we obtain

ga ¼ gð0Þa þ ∂ga
∂XHB

�����
ð0Þ
XHB: [S22]

The altered apical conductance evokes a change δV ¼ V − V 0 in
the membrane potential which influences the basal Kþ and Naþ

conductances. The Kþ channels are voltage-regulated at an acti-
vation time τ. The dynamics of the change δgKb ¼ gKb − gKð0Þ

b can
be described by

τ∂tδgKb ¼ ∂gKb
∂V

�����
ð0Þ
δV − δgKb [S23]

which results in

eδgKb ¼ 1

1þ iωτ
∂gKb
∂V

�����
ð0Þ

fδV [S24]

for oscillatory stimuli XHB ¼ ~XHBeiωt þ c:c: at angular frequency
ω. The Naþ channels are rapidly activated; to linear order their
conductance follows as

gNa
b ¼ gNað0Þ

b þ ∂gNa
b

∂V

�����
ð0Þ
δV: [S25]

Linearization of Eq. S20 yields

½iωCb þ ga þ gKb þ gNa
b þ 1 − iωτ

1þ ω2τ2
∂gKb
∂V

�����
ð0Þ
ðV − VPÞ

−
∂gNa

b

∂V

�����
ð0Þ
ðVNa − V Þ�fδV

¼ ∂ga
∂XHB

�����
ð0Þ

~XHB: [S26]

The mechanomotility coefficient α follows as α ¼ cfδV∕ ~XHB.
From Eq. S26 we note that delayed voltage-regulated Kþ chan-
nels can reduce the effect of the membrane capacitance. A large
enough voltage dependence of the inward Naþ channels can then
yield hyperpolarization of the cell upon positive deflection of the
hair bundle, as requested for the critical value α�.

Fig. S3 shows the resulting magnitude and phase of α for
typical parameters for apical OHCs (Table S2) in dependence on
the frequency of hair-bundle stimulation. The values
∂gKb ∕∂V ¼ 1.36 μS · V−1 and ∂gNa

b ∕∂V ¼ 1.85 μS · V−1 have been
chosen to yield the critical value α� ¼ −2 at the frequency f 0 ¼
200 Hz and lie in the range of measured values (10, 11).
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Fig. S1. Coupling between the reticular lamina (RL) and the basilar membrane (BM). The coupling arises from OHCs in series with Deiters’ cells (DC) and an
impedance ZC from the remaining organ of Corti. See the text for a description of the coupled OHCs and Deiters’ cells.
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Fig. S2. Regulation of the OHC membrane potential. (A) Hair-bundle deflection opens ion channels; Kþ and Ca2þ flow into the cell. The cell membrane
contains various additional ion channels that are regulated by the membrane potential and the Ca2þ concentration. In our model, we consider voltage-regu-
lated outward Kþ channels and inward Naþ channels. (B) An equivalent circuit of an OHCwith a variable resistance Ra controlled by hair-bundle displacement, a
membrane capacitance Cb, and a basoleteral membrane conductance Rb.
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Fig. S3. The modeled mechanomotility coefficient α. We show the dependence of the magnitude (Black) and phase (Red) of α on the sound frequency. For
f0 ¼ 200 Hz the coefficient α ¼ −2 emerges, which represents a typical value for the critical α�. The magnitude of α is strongly attenuated for higher frequen-
cies. By varying the voltage dependence of the basal Kþ and Naþ channels the critical value α� can emerge at different frequencies f0 below a few kilohertz.
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Table S1. Parameters used in the cochlear model

Parameter Description Value Reference

L length of the cochlea 20 mm [4]
Λ fluid friction 5 × 105 N · s · m−4

wBMðrÞ width of the basilar membrane (50 + 200r) μm [5]
ABMðrÞ area of the basilar-membrane strip wBM(r) × 8 μm
λHB friction of the hair-bundle complex 1 μN · s · m−1 [6]
KIHB stiffness of the hair bundles of IHCs 2 mN · m−1 [7]
λIHB friction of the hair bundles of IHCs 1 μN · s · m−1 [6]
λBMðrÞ friction of the basilar membrane 0.03 × wBM(r) N · s · m−2

KC stiffness of the organ of Corti 10 mN · m−1

λC friction of the organ of Corti 10 μN · s · m−1

KD stiffness of OHCs and Deiters’ cells 20 mN · m−1 [8]
λD friction of OHCs and Deiters’ cells 10 μN · s · m−1

Table S2. Parameters for modeling the regulation of the OHCs membrane potential

Parameter Description Value Reference

VE potential of the endolymph 80 mV [14]
VP potential of the perilymph −100 mV [14]
VNa Naþ reversal potential 22 mV [11]
gKþ
a apical conductivity of Kþ channels 5 nS [15]

gKþ
b basolateral Kþ conductivity 10 nS [10]

Cb membrane capacitance 40 pF [10]
∂gKþ

a ∕∂XHB dependence of apical Kþ conductivity on XHB 5 mS · m−1 [16]
τ activation time of voltage-regulated Kþ channels 1 ms [10]

Movie S1 Animated illustration of fundamental modes of motion by the organ of Corti. The passive motion is modest, and the hair-bundle movement is
similar to that of the basilar membrane. Active hair-bundle motility greatly enhances the motion of both the hair bundles and the basilar membrane. In the
ratchet mechanism, only hair-bundle motion is amplified; the basilar membrane moves as in the passive case.

Movie S1 (MOV)

Reichenbach and Hudspeth www.pnas.org/cgi/doi/10.1073/pnas.0914345107 5 of 5

http://www.pnas.org/content/vol0/issue2010/images/data/0914345107/DCSupplemental/SM1.mov
http://www.pnas.org/cgi/doi/10.1073/pnas.0914345107

