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Experimental Details. Fig. S1 (Left) illustrates the Kelvin probe
measurement to obtain the surface potential of the elastomer.
The vertical gray stripe depicts the cross section of the elastomer.
The blue and yellow squares illustrate the sprayed-on charges,
and the electric field is illustrated by small arrows. In addition,
equipotential lines are drawn. To assess the surface potential
of the elastomer via non-contact measurements, the housing of
the probe head (gray rectangle with yellow border) is driven to
a potential equal to the surface potential of the elastomer by ap-
proximately nulling the electric field in the gap. Fig. S1 (Right)
shows the experimental arrangement with two Kelvin probes
to measure the potentials φ1;2 on both surfaces of the elastomer;
the voltage U between the two elastomer surfaces is then ob-
tained from the potential difference between the two Kelvin
probe readings.

In Fig. 3 it seems surprising that the voltage measured at the
highest stretch ratio of 1.25 is smaller than the voltage at the low-
er stretch ratio of 1.15, although there are more charges on the
elastomer at a stretch ratio of 1.25 as compared to the stretch
ratio of 1.15. Fig. S2 illustrates such a situation. Whereas on
the left side, with a thick elastomer the charge Q1 is smaller than
the charge Q2, on the right side, with a thinner elastomer and a
larger area, the opposite is true for the voltages: U1 is larger
than U2.

The geometry for the theoretical modeling is illustrated in
Fig. S3. The initial dimensions of the elastomer are denoted with
a subscript i; the dimensions p stand for the prestretched state.
The transition from the i to the p state is partly viscoelastic.
The reference state 0 can be obtained on a short time scale if
the mass m used for prestretching is removed. Stretching to the
final state after charging is described from the reference state 0.

Fig. S4 illustrates the excellent fit used to obtain the prestretch
parameter λpx ¼ 1.42, as discussed in the main text.

Experiments shown in Figs. 4 and 5 of the manuscript are illu-
strated with two video files. In Movie S1 the reversibility of the
large deformations of an elastomer surface is demonstrated. Even
the huge irregular deformations visible in Fig. 4D fully recover to
the initial flat state.

Movie S2 illustrates the operation of the electrode-free bend-
ing actuator. The speed of operation is currently limited by the
used dc high-voltage power supply. In order to discharge the ac-
tuator, the polarity of the supply must be changed. This is only
possible by switching the device off, followed by a manual change
of polarity.

Theoretical Considerations on Elastomer Stripes with Sprayed-on
Charges. An elastomer with sprayed-on electrical charges differs
significantly from a deformable electrode coated capacitor. Con-
ducting electrodes are equipotential surfaces, and the free flow of
electrons along them concentrates the charges near the edges and
corners of the structure. In contrast, elastomers with sprayed-on
electrical charges may have charge distributions that are different
on the top and bottom surface of the elastomer. In the article we
have made the approximation that the energetics of an elastomer
with sprayed-on electrical charges is dominated by the usual
capacitor term.

In order to verify our approximations, we rigorously solve the
problem of a plane dielectric of finite thickness h with arbitrary
surface charge densities on both sides. The electrostatic energy
can be written in two equivalent forms (1) (centimeter-gram-
second Gaussian system is used here): W ¼ 1

8π ∫EDdV ¼

1
2
∫ φdq. The last integral can be over the volume, or surface,

or a mixture of both. It is usually simpler than the first expression,
especially when the integration should be done only over the
surface charges as in our case. To calculate the energy, we
solve a Poisson-type equation for the potential φ, divD ¼
−divðε gradφÞ ¼ 4πρ everywhere; find the field E ¼ −∇φ and
the displacement D ¼ εE and calculate the energy using any of
the two aforementioned integrals.

The dielectric will occupy a layer 0 < z < h, and subscripts 0
and h refer to the corresponding z planes. Subscript e refers to the
elastomer. Because only surface charge densities σ are present,
the potential satisfies the Laplace equation Δ⊥φþ φzz ¼ 0 both
inside and outside of the elastomer. Here we mean under Δ⊥ the
part of the Laplacian in the ðx; yÞ plane Δ⊥ ¼ ∂xx þ ∂yy. Applying a
Fourier transformation in the x-y plane (denoted by tilde, ~φ) we
get −k2 ~φþ ~φzz ¼ 0 where k2 ¼ k2x þ k2y is the square of the
Fourier wavevector, and the subscript z denotes differentiation.
The solutions of this equation outside and inside the elastomer
can be written as

~φ− ¼ c−ekz; z < 0; ~φe ¼ c1ekz þ c2e−kz; 0 < z < h;

~φþ ¼ cþe−kðz−hÞ; z > h: [S1]

With such notations the conditions at infinities are satisfied
automatically, and the coefficients c� have the meaning of the
potentials on both surfaces: ~φ0 ¼ c−, ~φh ¼ cþ. The continuity
of the potential and the change in the normal derivative of
(Fourier image of) the electric displacement ~Dn ≡ ð1 or εÞ ~En≡
−ð1 or εÞ ~φz on both surfaces can be written as follows:

~φ−ð0Þ ¼ ~φeð0Þ ⇒ c− ¼ c1 þ c2;

ε
d ~φe

dz

����
0

−
d ~φ−

dz

����
0

þ4π ~σ0 ¼ 0 ⇒ kc− − εkðc1 − c2Þ ¼ 4π ~σ0;

~φþðhÞ ¼ ~φeðhÞ ⇒ cþ ¼ c1ekh þ c2e−kh;

d ~φþ
dz

����
h
−ε

d ~φe

dz

����
h
þ4π ~σh ¼ 0 ⇒ kcþ þ εkðc1ekh − c2e−khÞ ¼ 4π ~σh:

[S2]

This system of linear equations can be easily solved. Subse-
quently, we will often use symmetric and asymmetric parts of
the charge and potential distributions (or their Fourier trans-
forms), defined as follows:

σ ¼ σh þ σ0; δ ¼ σh − σ0;
u ¼ φh þ φ0; v ¼ φh − φ0;

which implies
σ0;h ¼ ðσ∓δÞ∕2
φ0;h ¼ ðu∓vÞ∕2 :

[S3]

With these notations, the coefficients c�, which are equal to the
surface potentials, are found to be

c∓ ≡ ~φ0;h ¼
2π

k

�
~σ

1þ εth kh
2

∓
~δth kh

2

εþ th kh
2

�
: [S4]

We use these formulas to relate charge densities and poten-
tials. Their symmetric and asymmetric parts separate and are
proportional to each other in Fourier space:
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~σ ¼ k
4π

�
1þ εth

kh
2

�
~u ≈

k
4π

~uþOðh2k ~uÞ|fflfflfflfflffl{zfflfflfflfflffl}
≤h2k~v

;

~δ ¼ k
4π

εþ th kh
2

th kh
2

~v ≈
�

ε

2πh
þ k
4π

�
~vþOðh2k~vÞ|fflfflfflffl{zfflfflfflffl}

∼h2k~v

;

~u ¼ 4π

k
~σ

1þ εth kh
2

≈
4π

k
~σ þ Oðh ~σÞ|fflffl{zfflffl}

∼hk ~u≤hk~v

;

~v ¼ 4π

k

~δth kh
2

εþ th kh
2

≈
�
2πh
ε

−
πh2k
ε2

�
~δþOðh3k2 ~δÞ|fflfflfflfflffl{zfflfflfflfflffl}

∼h2k2 ~v

:

[S5]

The approximate expressions are Taylor expansions up to the
first meaningful order in (small) thickness h. It requires a differ-
ent number of terms in different formulas, as will become clear
from the energy expressions below. There exists subtlety in the
comparison between the different terms in the potential and
charge representation. If the characteristic in-plane size of the
system is a, the important wavevectors are k ∼ 1∕a, and the small
parameter in the Taylor expansion is hk ∼ h∕a ≪ 1. From the
Fourier representation (Eq. S5) we get

~σ
~δ
¼ 1þ εth kh

2

εþthkh
2

thkh
2

~u
~v
≈
kh
2ε

~u
~v
: [S6]

This means that the ratio of the symmetric/asymmetric terms
always has a different order of magnitude for charges and poten-
tials. For our experimental conditions it is always small for the
charges, but not necessarily small for the potentials. From the
experiment, we know that typically u ≤ v. Correspondingly,
σ ≤ khδ ≪ δ. As shown below, the symmetric and asymmetric
parts separate in the energy expression in the Fourier space
(Eq. S13). The coefficient in the asymmetric potential term is
a factor of 1∕kh larger than for the symmetric part. For this rea-
son we make a Taylor expansion up to zero order in the symmetric
terms, but up to the first order in asymmetric ones. Orders of
magnitude of the errors for the worst realistic case u ∼ v are
indicated in Eq. S5.

The approximate formulas for small thicknesses can be
analytically Fourier-inverted for arbitrary charge densities. The
two-dimensional (2D) (direct or inverse) Fourier transform (with
symmetric prefactor) has the following properties (2):

~k−1 ¼ r−1; ~f �g ¼ 2π~f ~g; ~Δ⊥f ¼ −k2~f : [S7]

Here the asterisks stands for 2D convolution. The inversion of
~k cannot be done in a similar fashion because of the singularities
involved. Using the first two properties, we can obtain a Fourier
inversion of the expression

~φs ¼
2π

k
~σ; which is the single-layer potential φs ≡ σ � 1

r
:

[S8]

The Fourier inversion of the function f in combination with
different powers of k can be written as follows:

1

k
~~f ¼ 1

2πr
� f ; ~~f ¼ f ; k~~f ¼ −1

k
~ð − k2 ~f Þ ¼ −1

2πr
� Δ⊥f ;

k2~~f ¼ −Δ⊥f : [S9]

This allows us to invert analytically the small thickness expres-
sions in Eq. S5:

σ ≈ −
1

8π2r
� Δ⊥u; δ ≈

ε

2πh
v −

1

8π2r
� Δ⊥v; u ≈

2

r
� σ;

v ≈
2πh
ε

δþ h2

2ε2r
� Δ⊥δ: [S10]

For the surface potentials in terms of charge densities and vice
versa we get

φ0;h ¼
u∓v
2

≈
1

r
� σ|ffl{zffl}
φs

∓
�
πh
ε
δþ h2

4ε2r
� Δ⊥δ

�
;

σ0;h ¼
σ∓δ

2
≈ −

1

16π2r
� Δ⊥u∓

�
ε

4πh
v −

1

16π2r
� Δ⊥v

�

¼ −
1

16π2r
� Δ⊥φð0; hÞ∓

ε

4πh
v: [S11]

One can recognize the global potential of the single layer φs,
the double layer capacitor term, and some addition related to the
in-plane inhomogeneity of the double layer in the simplified
expressions. Surface charge densities in terms of potentials are
given by the contributions from the global term for each surface
potential and the asymmetric capacitor contribution.

Total electrostatic energy. It is convenient to calculate the energy in
the Fourier space, because then the intermediate results are ex-
act. According to Parseval's theorem (2) (in unitary convention),
∫ f g�dS ¼ ∫ ~f ~g�dSk. Here asterisk superscripts denote complex
conjugates. Thus, the energy can also be calculated as the integral
of the product of the Fourier images of the charges and poten-
tials. All our functions are real and even with respect to x and y (or
can be made even by quadrupling of their domain). Therefore,
their Fourier transforms are also real, and we can write for
the surface differential of the electrostatic energy:

dW ¼ φ0σ0 þ φhσh
2

dS ¼ uσ þ vδ
4

dS →
~φ0 ~σ0 þ ~φh ~σh

2
dSk

¼ ~u ~σþ~v ~δ
4

dSk: [S12]

Using the relationships in Eq. S5, this can be written in terms
of charges or potentials only, in exact or in approximate form.
Symmetric and asymmetric variables u ∝ σ, v ∝ δ separate, and
the energy is always diagonal in terms of these variables:

dW ¼ k
16π

��
1þ εth

kh
2

�
~u2 þ εþ th kh

2

th kh
2

~v2
�
dSk

¼ π

k

�
~σ2

1þ εth kh
2

þ
~δ2th kh

2

εþ th kh
2

�
dSk

≈
�
k ~u2

16π|{z}
≤kv2

þ ε~v2

8πh|{z}
ðkhÞ−1kv2

≫kv2

þ k~v2

16π|{z}
kv2

�
dSk

≈
�

π ~σ2

k|{z}
≤ðkhÞ2δ2∕k
≤ðkhÞhδ2

þ πh~δ2

2ε|ffl{zffl}
hδ2

≫ðkhÞhδ2

−
πh2k~δ2

4ε2|fflfflffl{zfflfflffl}
ðkhÞhδ2

�
dSk: [S13]

Under each term of the Taylor expansion, we indicated the
relation to the last term (lowest order correction in v and δ), as-
suming the worst case u ∼ v. For u ≪ v the terms with u or σ
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should be dropped, because omitted terms with v and δ are larger.
But we always retain the leading correction in v and δ. The central
(capacitor) term is the largest unless u ≫ v (almost equal charges
on both sides). In this case not all terms in Eq. S13 are meaning-
ful, but the largest term is related to the u or σ expressions (global
energy of a single layer). The transition to this regime occurs
with u2 ∼ v2a∕h.

Let us transform the approximate energy expression in Eq. S13
written in terms of potentials using the approximate potential-
charge relations from Eq. S5. If we retain only the leading terms
after squaring, this results in

dW ≈
�

k ~u2

16π|{z}
≤kv2

z}|{global u

þ ε~v2

8πh|{z}
ðkhÞ−1kv2

≫kv2

zfflffl}|fflffl{capacitor v

þ k~v2

16π|{z}
kv2

z}|{global v�
dSk

≈
�

π ~σ2

k|{z}
≤ðkhÞ2δ2∕k
≤ðkhÞhδ2

þ πh~δ2

2ε|ffl{zffl}
hδ2

≫ðkhÞhδ2

−
πh2k~δ2

2ε2|fflfflffl{zfflfflffl}
ðkhÞhδ2

zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{f rom capacitor v

þ πh2k~δ2

4ε2|fflfflffl{zfflfflffl}
ðkhÞhδ2

�
dSk

≈
�

π ~σ2

k|{z}
≤ðkhÞ2δ2∕k
≤ðkhÞhδ2

zfflfflffl}|fflfflffl{global σ

þ πh~δ2

2ε|ffl{zffl}
hδ2

≫ðkhÞhδ2

zffl}|ffl{capacitor δ

−
πh2k~δ2

4ε2|fflfflffl{zfflfflffl}
ðkhÞhδ2

zfflfflffl}|fflfflffl{global δ¼global v−part capacitor v�
dSk: [S14]

Therefore, we recover the last expression (Eq. S13) obtained
by Taylor expansion of the energy in the charge representation.
The global u term related to the single layer potential always
transforms directly into the global σ term and vice versa. The glo-
bal δ term related to the asymmetric charge distribution contains
the contribution from the capacitor v term. Conversely, in the
transformation from the charge to the potential representation,
the capacitor δ term will contribute to both capacitor v and global
v terms.

The inversion of the approximate expressions in Eq. S13 can be
performed analytically for arbitrary potentials or charge profiles
using Parseval's theorem and properties of the Fourier inversion
(Eq. S9). We write the capacitor term in front and indicate the
order of magnitude of all terms assuming that typical sizes of the
elastomer rectangle are a (smaller side) and b (larger side).
Remember that σ ∼ khδ ∼ hδ∕a, and the convolution brings an
area integration factor ∼ab:

dW ≈
�
ε~v ~v
8πh

þ ðk ~uÞ ~uþ ðk~vÞ~v
16π

�
dSk

→

�
εv2

8πh|{z}
v2∕h

−
ð1r � Δ⊥uÞuþ ð1r � Δ⊥vÞv

32π2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðab∕bÞðu2∕a2Þ≤v2∕a v2∕a

�
dS;

dW ≈
�
πh~δ ~δ
2ε

þ 2π ~σ

k
~σ

2
−
πh2ðk~δÞ~δ

4ε2

�
dSk

→

�
πδ2h
2ε|ffl{zffl}
δ2h

þ
ð1
r
� σÞ

zfflfflffl}|fflfflffl{φS

σ

2|fflfflfflffl{zfflfflfflffl}
ðab∕bÞσ2≤δ2h2∕a

þ h2ð1r � Δ⊥δÞδ
8ε2|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

h2ðab∕bÞðδ2∕a2Þ∼δ2h2∕a

�
dS:

[S15]

The first term everywhere is the capacitor term. The second
term is the global term. As explained above, when one switches
between the charge and potential representations, the terms
transform into each other in a nontrivial way. Omitted terms

are smaller than at least one of the retained terms. These expres-
sions are not trivial. They involve the integration over the elas-
tomer area and include convolutions and Laplacians. However,
orders of magnitude indicated for each term show that for a thin
elastomer with h∕a ≪ 1 we can restrict ourselves to the capacitor
terms in Eqs. 3 or 5 employed in the main text. Note that there,
for practical convenience, we use the International System of
Units and the conventional notation U for the asymmetric part
of the potential (voltage) v, as defined in Eq. S3.

Although the capacitor term looks deceptively simple, its spa-
tial inhomogeneity accounts for one more subtle and important
effect. In plane DEAs with conducting equipotential electrodes,
there are no lateral electrostatic forces acting on the elastomer,
whereas for nonconducting elastomers with fixed charges they are
present and should be reflected in the electrostatic energy. The
obtained formulas show that within the approximations made,
such forces are taken into account simply by the capacitive energy
expression with a variable voltage. Indeed, the potential varies
along the surface exactly because the charge distribution is
different from that on the equipotential plates of conventional
capacitors. The charge distribution might be rather homogeneous
in the beginning of the corona spraying cycle. This creates an ele-
vated potential in the center, which deflects subsequently arriving
ions toward the edge of the stripe as the charging proceeds. As a
result, the final charge density is higher toward the edges, but is
not as high as for conducting electrodes. The elevated potential
(and voltage) in the middle of the stripe were indeed measured
experimentally.

Additional Historical Information.For the interested reader we have
copied a few pivotal parts of Quincke’s and Röntgen’s work in the
original German version together with translations in English. In
the translation we have tried to keep the initial intent and stylistic
flavor of the authors.

Translation of extracts from Quincke’s work titled “On electri-
cal expansion” (original German version compiled in Fig. S5) (3):

One will learn from this that solid and liquid isolators
change their volume, if they are, similarly to the glass
of a Leyden jar, exposed to electrical forces. The volume
can increase thereby, what is the most typical, but it can
also decrease. The volume change does not originate
from electrical compression. The expansion of the glass
caused by the electrical forces is homogeneous in all di-
rections, like a thermal expansion, but it does not origi-
nate from warming. Simultaneously with the dimensions,
also the elastic force of the isolator changes under the
influence of the electrical forces. One set of substances
shows a decrease here, another set shows an increase.
Thermometer capacitors made of caoutchouc were fab-
ricated in such a way, that in one end of a long, black
caoutchouc hose a capillary tube with a fused-in platinum
wire was cemented with Shellac and Canada balsam,
whereas in the other end a short tube of flint glass was
drawn to a needle and similarly fixed.
From these experiments one can learn that the volume
increase of caoutchouc is, like it is true for glass and glim-
mer, almost proportional to the square of the electric po-
tential difference between the capacitor electrodes.
Under equal conditions the increase for fresh caoutchouc
is ten times higher than for glass; for caoutchouc, which
was in contact with water for two days, values are similar
to glass.

Translation of extracts from Röntgen’s work titled “On the
shape- and volume changes of dielectric bodies caused by elec-
tricity” (original German version compiled in Fig. S6) (4):

Keplinger et al. www.pnas.org/cgi/doi/10.1073/pnas.0913461107 3 of 8

http://www.pnas.org/cgi/doi/10.1073/pnas.0913461107


Finally, to those colleagues, who may wish to see an elec-
trical deformation of a solid body without attempting to
quantify the process, I would like to recommend the fol-
lowing experiment, which I carried out in 1876, and which
I on occasion presented to the assembly of natural scien-
tists in Baden-Baden (1879) among other findings. An
approximately 16 cm wide and 100 cm long, rectangular
stripe of thin, red caoutchouc is clamped between two
small wooden ledges at the top and the bottom; the upper
clamp is attached to some kind of arm or hook in such a
way, that the caoutchouc stripe hangs freely; the bottom
clamp is loaded with weights, which stretch the stripe
approximately to the double length. After having waited
till the elastic aftereffect has become imperceptible, one
observes the position of the bottom end of the stripe, for
example on a paper scale placed nearby, while the
caoutchouc is electrified by an assistant. For that purpose
the assistant holds in each hand an isolated comb of
needles, where one of them is connected by a conductor
to the positive and the other to the negative electrode of a
strong Holtz influence machine; the caoutchouc stripe

hangs between the parallel held combs, but the former
is not touched by the needles. As the assistant starts
for example at the top and gradually lowers both combs,
a larger and larger part of the caoutchouc becomes elec-
trified; accordingly one observes a continuous increase of
the length of the band, which finally, when the whole
stripe is electrified, amounts to several centimeters. Since
dry caoutchouc is a good isolator, this lengthening per-
sists for a long time afterward. It can, however, at least
to a large degree, be removed by discharging the stripe,
which is done in a similar way to the charging process; but
the combs have to be now connected to the ground.
Mr. Quincke has also published (1880) similar experi-
ments and believes that one is allowed to conclude from
them, that the elasticity of solid bodies is changed by elec-
trical forces; I, from my side, regard this conclusion as
rather daring, and after an assessment of Quincke’s
experiments I didn’t find an inducement to share his
opinion; however, since I am worried that this article
would get too long, I prefer to refrain from disclosing
the motives for my negatory attitude.
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Fig. S1. (Left) Illustration of the Kelvin probe technique for measuring the surface potential. In the Röntgen experiment two Kelvin probes are used to
monitor the surface potential on both sides of the film. (Right): Scheme of the experimental setup with two Kelvin probes for measuring the potential
on both surfaces of the elastomer.
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Fig. S2. Schematic illustration of the charges on the elastomer and of the voltages across the elastomer in a thick state with a low stretch ratio and in a thin
state with a high stretch ratio, which also has larger area. Whereas the Left state can be stable under voltage-controlled conditions, the Right state is in the
pull-in region. In the charge-controlled operation mode, both states are thermodynamically stable.

Fig. S3. Illustration of the different deformation dimensions used in the text. The initial state i is characterized by the dimensions xi , yi , and zi , and the
weight-loaded state p has sizes xp, yp, and zp. The transition from the i to p state takes several hours and is partly viscoelastic. State 0 with dimensions
x0, y0, and z0 is an auxiliary starting state, which discards viscoelastic effects. The prestretches λpx;py;pz characterize the transition from 0 to p. The charged
state has the dimensions x, y, and z and is characterized by the secondary stretches λsx;sy;sz referred to the p state.

Fig. S4. Relation between the lateral secondary stretches λsy and λsx . It allows one to deduce real nonviscoelastic prestretch λpx experimentally. The solid curve,
fit with the first equation of Eq. 8, uses a prestretch value of λpx ¼ 1.42.
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Fig. S5. Extracts from Quincke’s original work in German.

Keplinger et al. www.pnas.org/cgi/doi/10.1073/pnas.0913461107 6 of 8

http://www.pnas.org/cgi/doi/10.1073/pnas.0913461107


Fig. S6. Extracts from Röntgen’s original work in German.
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Movie S1. Illustration of the reversibility of the large deformations of an elastomer surface with sprayed-on electrical charges.

Movie S1 (MPG)

Movie S2. Illustration of the operation of the electrode-free bending actuator.

Movie S2 (MPG)
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