
Methods

Sample collection

Blood samples were collected from volunteers with the help of local administrators, and 

with informed consent and approval of an Institutional Ethical Committee. The names we 

use are the ones by which the groups are described anthropologically, but are not unique 

identifiers. We use “traditionally upper caste” to designate Brahmin and Kshatriya, 

“traditionally middle caste” to refer to Vysya, and “traditionally lower caste” to refer to 

Shudra. We use “tribal” and “hunter gatherer” to refer to non-caste groups.

Genotyping and data curation

We genotyped samples on Affymetrix 6.0 arrays using standard protocols. We restricted 

analysis to 560,123 SNPs on the autosomes and 27,630 on the X chromosome with 

reliable genotyping across >95% of the samples, and used the Birdsuite software50 to 

assign genotypes. We removed 10 samples with unusually high relatedness to others as 

assessed by the rate of genome-wide allele sharing (we included one sample per kinship 

group). We also intersected our data with HGDP samples genotyped on an Illumina 650Y 

array14 and HapMap samples, resulting in 119,744 SNPs on the autosomes and 5,551 on 

the X chromosome. As evidence for the usefulness of the merged data set, and the 

absence of substantial structure in the data related to experimental artifacts, we could not 

find any PC that distinguished all the Indians from the HGDP samples.

Statistical methods for analyzing population structure
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PCA was performed using the EIGENSOFT software17. We estimated allele frequency 

differentiation using FST, which we computed using a formula that has asymptotically 

minimal variance (Appendix). We also calculated an inbreeding corrected FST that is 

asymptotically consistent in the presence of excess homozygosity (Appendix)23. To 

compute Wright’s Fixation Index F23, an estimate of the inbreeding coefficient for each 

group, we compared the probability of two alleles being shared identical by state within 

the same individual, to across individuals from the same group (Appendix). 

Block Jackknife procedure to estimate standard errors

To obtain a standard error on FST as well as the f2, f3 and f4 statistics, we used a Block 

Jackknife procedure33. We divided the genome into contiguous 5 cM chunks and deleted 

each in turn to quantify the variability of the statistic, which produces a standard error for 

the value of any estimated quantity. When the null hypothesis implies that an f-statistic 

has mean zero as in the 4 Population Test, the jackknife standard error can be converted 

to a Z-score, which has mean 0 and variance 1 under the null hypothesis. We caution that 

the normality assumption becomes imperfect for |Z|>2 (not shown). Thus, large Z-scores 

should be viewed as statistically significant but not simply convertible to P-values51.

Inferring the age of founder events via correlation of allele sharing

For each pair of samples in our data set we record whether they share 0, 1 or 2 alleles at 

each SNP in the genome. When both individuals are heterozygous we record 1 allele 

shared (to account for uncertainty about haplotype phase). For each Indian group, we 

compute the autocorrelation of this allele sharing statistic as a function of distance across 
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all sample pairs, searching for the signature of stretches of allele sharing due to descent 

from a common founder whose extent reflects the age of the founder event. To correct for 

background allele sharing inherited from the ancestral populations, we subtract the curve 

obtained by comparing pairs across groups of similar ANI proportion, choosing from “65 

± 5% ANI” (Meghawal, Vaish, Kashmiri Pandit), “58 ± 5% ANI” (Velama, Srivastava, 

Meghawal, Vaish), “53% ± 5% ANI” (Lodi, Naidu, Tharu, Velama, Srivastava), “47 ± 

5% ANI” (Bhil, Satnami, Kurumba, Kamsali, Vysya, Lodi, Naidu, Tharu) and “42 ± 5% 

ANI” (Mala, Madiga, Chenchu, Bhil, Satnami, Kurumba, Kamsali, Vysya). To convert 

the observed allele sharing decay to a date estimate, we perform a least squares fit of an 

exponential distribution, y = a + be-Dt. Here, t is the inferred number of generations since 

the founder event under the assumption of a single strong event, D the genetic distance in 

Morgans between SNPs, and the factor of 2 reflects the fact that a stretch of allele sharing 

can be broken by recombination on either haplotype.

3 Population Test for mixture 

The 3 Population Test is based on an ‘f3 statistic’, a 3-population generalization of FST. 

This statistic is equal to the inner product of the frequency differences between a group X 

and two other groups A and B, which we show in Note S3 and the Appendix is 

proportional to the correlated genetic drift between groups A and X, and groups A and B. 

If X is related in a simple way (without mixture) to an ancestor, we expect this quantity to 

be positive, since the genetic drift along the lineage leading from the ancestor to X must 

be positive. By contrast, if group X has arisen from a mixture of groups related to A and 
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B, it can be negative, and thus the observation of a significantly negative value of the f3

statistic provides an unambiguous signal of mixture. 

4 Population Test for mixture

To assess whether an unrooted phylogenetic tree, for example (YRI,Papuan)(Dai,Onge), 

is consistent with the SNP allele frequency data, we calculate an ‘f4 statistic’, which is 

expected to be proportional to the correlation in allele frequency differences between 

pairs of groups (Appendix). If the topology (A,B)(C,D) is correct, then the frequency 

differences between A and B should reflect genetic drift that is uncorrelated with that 

between C and D. Thus, the expected value of the product of frequency differences is 

zero. We compute the statistic f4(A;B;C,D) with a jackknife standard error. We interpret 

significant deviations of the f4 statistics from 0 for all three possible topologies as 

evidence that the 4 groups cannot be related via a simple phylogeny without mixture.

f3 Ancestry Estimation

To obtain estimates of ANI ancestry for each Indian Cline group in the absence of 

accurate ancestral populations, we used f3 Ancestry Estimation, f4 Ancestry Estimation

and Regression Ancestry Estimation (Note S5), which produce consistent results on the 

Indian Cline groups as shown in Table S5. Here we restrict our description to the f3

Ancestry Estimates, which we use for Table 2 as this method provides the smallest 

standard errors. To implement f3 Ancestry Estimation, we model each Indian Cline group 

as a linear mixture K=mk(ANI)+(1-mk)ASI, implying that each has inherited a proportion 

mk of ANI ancestry followed by genetic drift. The topology of Figure 4 implies that Onge 
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and ASI are a clade, and hence f3(Adygei;Outgroup,K) = mkf3(Adygei;Outgroup,ANI) + 

(1-mk)f3(Adygei;Outgroup,ASI) = mkf3(Adygei;Outgroup,ANI) + (1-

mk)f3(Adygei;Outgroup,Onge). We thus obtain equations: yK,Outgroup = (1−mk)xOutgroup + 

(mk)z, where xOutgroup = f3(Adygei;Outgroup,Onge) and yK,Outgroup = 

f3(Adygei;Outgroup,K), and solve them using non-linear least squares, fitting the mk and 

z for all three outgroups simultaneously (YRI, Papuan and Dai). We explored whether 

allowing the coefficient z to depend on xOutgroup improves the fit, as might be expected if 

the three outgroups do not all have the same position in the phylogeny. We found that 

this did not change the coefficients mk or produce a significantly better fit, and hence we 

allow z to be the same for all three outgroups.
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