Supporting Information

Expanding the dipeptidyl peptidase 4-regulated peptidome via an optimized peptidomics platform

Arthur D. Tinoco, Debarati M. Tagore, and Alan Saghatelian*

Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138

saghatelian@chemistry.harvard.edu

Table S1. The charge state determines the fraction in which peptides elute from from a PolySULFOETHYL A SCX column at pH 2.6.

Protein (peptide region)	Peptide Sequence	Charge	Salt Fraction (mM KCI)
EF-1α(281-291)	APVNVTTEVKS	2	40
CtsB(74-86)	LPETFDAREQWSN	2	40
Sorbitol dehydrogenase(25-40)	YPIPELGPNDVLLKMH	3	100
Mepβ(21-41)	LPAPEKFVKDIDGGIDQDIFD	3	400
Atp6v1g1(107-118)	RPEIHENYRING	4	400
DBI(92-105)	RPGLLDLKGKAKWD	5	400

Table S2. Absolute fold changes of peptides identified in the salt free SCX fraction of the global peptide profiling experiments (N = 4) with $DPP4^{+/+}$ and $DPP4^{-/-}$ kidney samples. The preferred DPP4 truncation sites in the $DPP4^{-/-}$ elevated peptide sequences are highlighted in bold.

Protein (peptide region)	Peptide Sequence	Fold Change
DPP4 ^{-/-} Elevated Peptides		DPP4 ^{-/-} / DPP4 ^{+/+}
Clathrin heavy chain(1662-1672)	PP YGQPQPGFG	3.88**
Legumain(74-88)	DDIANSEENPTPGVV	5.13**
Low density lipoprotein receptor-related protein	PENVENQN	3.02**
2(4552-4559)		
Phosphatidylinositol-binding clathrin assembly	PPNP FGPVSGAQIQ	4.77**
protein(645-658)		
Putative uncharacterized protein OS=Mus	APAP VGPLVG	2.86*
musculus GN=Dab2 PE=2 SV=1(270-279)		
Putative uncharacterized protein OS=Mus	NPGLDTTDL	4.36**
musculus GN=Pcdh24 PE=2 SV=1(1300-1308)		

*, p<0.05

Table S3. Absolute fold changes of peptides identified in the SCX-40 mM KCl fraction of the global peptide profiling experiments (N = 4) with $DPP4^{+/+}$ and $DPP4^{+/-}$ kidney samples. The preferred DPP4 truncation sites in the $DPP4^{+/-}$ elevated peptide sequences are highlighted in bold. The precursor amino acid for the $DPP4^{+/+}$ elevated peptides is shown in bold and parentheses. (M) = oxidized methionine.

Protein (peptide region)	Peptide Sequence	Fold Change
DPP4 ^{-/-} Elevated Peptides		DPP4 ^{-/-} / DPP4 ^{+/+}
60 S ribosomal protein L6(272-280)	VP QLQGYLR	4.11**
ATP synthase a(88-101)	LPHTFTPTTQLS(M)N	2.90**
ATP synthase b, mitochondrial(68-80)	VP KTGVTGPYVLG	1.97**
ATP synthase b, mitochondrial(68-84)	VP KTGVTGPYVLGTGLS	2.13**
ATP synthase e, mitochondrial(3-13)	PP VQVSPLIKF	2.91**
ATP synthase coupling factor 6, mitochondrial	FP TFKFD	3.43*
(90-96)		
Brain protein 44(90-96)	IPKNWSL	2.59*
Cathepsin B(80-88)	LP ETFDARE	4.22**
Cathepsin B(80-89)	LP ETFDAREQ	3.02**
Cathepsin B(80-90)	LP ETFDAREQW	2.09**
Cathepsin B(80-91)	LP ETFDAREQWS	3.05**
Cathepsin S(239-248)	LP FGDEDALK	3.28**
Cordon-bleu protein-like 1(1071-1086)	LP AETSLPLVFPKPMT	3.45**
Cytochrome b-c1 complex subunit Rieske,	VP AASEPPVLDVKR	2.51**
mitochondrial(34-47)		
Cytochrome c oxidase polypeptide 5A,	VPEPKIIDA	2.00**
mitochondrial(79-87)		
Cytochrome c oxidase polypeptide 6A1,	KPFP WGDG	6.25**
mitochondrial(84-91)		
Cytochrome c oxidase subunit 4 isoform 1(44-	YPLP VAHVTMLS	3.31**
56)		
Cytochrome c oxidase subunit 6B isoform	AP FDSRFPNQNQ	5.42**
1(15-26)		
Cytoplasmic dynein 1 light intermediate chain	KP ASVSPTTPTSPTEGEAS	2.68**
1(505-523)		
Dihydrolipoyllysine-residue	PPVPSP SQPPSSKPVS	4.11**
succinyltransferase component of 2-		
oxoglutarate dehydrogenase complex,		
mitochondrial(186-201)		

Disabled homolog 2(625-634)	GP LKDIPSDA	2.65**
Glyceraldehyde-3-phosphate-dehydrogenase	IP ELNGKLT	2.45*
(219-227)		
Growth arrest-specific protein 2(219-227)	AP SGSFFARDNTANF	3.56**
Heme-binding protein 1(66-84)	VGGTNDKGVGMGMTVPVSF	5.18**
Histidine triad nucleotide-binding protein(27-	IPAKIIFE	17.96**
34)		
Kinesin light chain 4(600-619)	AP LQVSRGLSASTVDLSSSS	2.12**
Low-density lipoprotein receptor-related	TP GYTATEDTFKDTAN	3.39*
protein(4637-4652)		
Lysosomal protective protein(346-354)	IPESLPRWD	17.63**
Major Urinary Protein 6(110-117)	IP KTDYDN	26.06**
Major Urinary Protein 6(110-118)	IP KTDYDNF	28.67**
Meprin A subunit beta(21-28)	LPAP EKFV	40.51**
Microtubule-associated protein tau(195-204)	APVPMP DLKN	2.40**
MKIAA0248 protein (fragment)(1790-1803)	TPRP TDPIPTSEVN	4.37**
Peptide methionine sulfide reductase(187-	GP ITTDIREGQ	2.76**
197)		
Peroxiredoxin-5, mitochondrial(50-62)	AP IKVGDAIPSVE	3.69**
Phosphatidylethanolamine-binding protein 1	VPKLYEQL	4.92**
(177-184)		
Protein kinase C and casein kinase substrate	KP GSNLSVPSNPAQSTQLQ	3.34**
in neurons protein 2(340-358)		
Protein NDRG1(122-129)	LP GVLHQF	3.48**
Protein NDRG1(375-393)	TP NSGATGNNAGPKSMEVS	3.42**
Putative uncharacterized protein OS=Mus	AP STAPSEDTNPQGGTAEPGHQQ	3.19*
musculus GN=Ubqln1 PE=2 SV=1(495-517)		
Serine/Arginine repetitive matrix protein 2	YP SSSRTPQAPTPAN	3.04**
(2275-2289)		
Serum Albumin(247-258)	FP NADFAEITKL	4.05**
Sorbitol dehydrogenase(25-38)	YPIP ELGPNDVLLK	7.49**
Sorbitol dehydrogenase(25-40)	YPIP ELGPNDVLLKMH	12.48**
Sulfotransferase 1 C2(244-256)	AP KSILDQSISPF	3.60**
Triosephosphate isomerase(238-247)	KP EFVDIINA	8.44**
Tripeptidyl-peptidase 1(497-505)	PP LGFLNPR	10.41**

PP LGFLNPRL	3.19**
PP LGFLNPRLY	4.81**
	DPP4 ^{+/+} / DPP4 ^{-/-}
(P) GYTATEDTFKDTAN	3.88**
(P)STAPSEDTNPQGGTAEPGHQQ	3.19**
(P)NADFAEITKL	4.05**
	PPLGFLNPRL PPLGFLNPRLY (P)GYTATEDTFKDTAN (P)STAPSEDTNPQGGTAEPGHQQ (P)NADFAEITKL

*, p<0.05

Table S4. Absolute fold changes of peptides identified in the SCX-100 mM KCI fraction of the global peptide profiling experiments (N = 4) with $DPP4^{+/+}$ and $DPP4^{-/-}$ kidney samples. The preferred DPP4 truncation sites in the $DPP4^{-/-}$ elevated peptide sequences are highlighted in bold. The precursor amino acid for the $DPP4^{+/+}$ elevated peptides is shown in bold and parentheses.

Protein (peptide region)	Peptide Sequence	Fold Change
DPP4 ^{-/-} Elevated Peptides		DPP4 ^{-/-} / DPP4 ^{+/+}
40 S ribosomal protein s2(264-275)	SP YQEFTDHLVK	13.9*
ATP synthase subunit b,mitochondrial(45-57)	PPLP EYGGKVRLG	5.91**
cAMP-regulated phosphoprotein 19(81-97)	AP DKTEVTGDHIPTPQD	5.26**
Catalase(23-40)	RP DVLTTGGGNPIGDKLN	35.6*
Cordon-bleu protein-like 1(404-420)	AP APPSKTPLAQTDERN	5.22**
Cytochrome c oxidase polypeptide 6A1,	KPFP WGDGNHT	4.14**
mitochondrial(84-94)		
Cytochrome c oxidase polypeptide 6A1,	KPFP WGDGNHTL	5.73*
mitochondrial(84-95)		
Legumain(158-167)	FP NDDLHVKD	3.59**
Lysosomal alpha-glucosidase(810-820)	AP LDTINVHLR	3.34*
Peroxiredoxin-5, mitochondrial(58-73)	IP SVEVFEGEPGKKVN	2.40**
Polypyrimidine tract-binding protein 1(5-18)	VP DIAVGTKRGSDE	4.98*
Profilin-1(44-58)	TP AEVGVLVGKDRSS	5.20*
Triosephosphate isomerase(238-249)	KP EFVDIINAKQ	3.43*
Triosephosphate isomerase(43-55)	PP TAYIDFARQK	3.94**
WT Elevated Peptides		DPP4 ^{+/+} /DPP4 ^{-/-}
cAMP-regulated phosphoprotein 19(83-97)	(P)DKTEVTGDHIPTPQD	5.26**

*, p<0.05

Table S5. Absolute fold changes of peptides identified in the SCX-300 mM KCl free fraction of the global peptide profiling experiments (N = 4) with $DPP4^{+/+}$ and $DPP4^{-/-}$ kidney samples. The preferred DPP4 truncation sites in the $DPP4^{/-}$ elevated peptide sequence is highlighted in bold.

Protein (peptide region)	Peptide Sequence	Fold Change
DPP4 ^{-/-} Elevated Peptides		DPP4 ^{-/-} / DPP4 ^{+/+}
Cytochrome c oxidase subunit 5A,	KP DIDAWELRKGMNTLVGY	2.79**
mitochondrial(58-76)		

*, p<0.05

Table S6. Selected peptide fractionation by off-gel electrophoresis (OGE). The peptides are from the $DPP4^{+/+}$ and $DPP4^{-/-}$ kidney peptidome. Fraction A = Lanes 1,2; B = Lanes 3,4; C = Lanes 5,6; D = Lanes 7-12.

Protein (peptide region)	Peptide Sequence	PI	Fraction
Mepβ(21-41)	LPAPEKFVKDIDGGIDQDIFD	3.6	A
Slc9a3r1(275-296)	SPRPALARSASSDTSEELNSQD	4.1	A
EF-1α(281-291)	APVNVTTEVKS	6.9	C, D
Slc22a12 (3-20)	FPELLDRVGGLGRFQ	7	С
Vimentin(440-460)	RTLLIKTVETRDGQVINETSQ	7.1	C
Atp6v1g1(107-118)	RPEIHENYRING	7.8	D

Table S7. Absolute fold changes of peptides identified in the OGE-Lane 1-2 fraction of the global peptide profiling experiments (N = 4) with $DPP4^{+/+}$ and $DPP4^{-/-}$ kidney samples. The preferred DPP4 truncation sites in the $DPP4^{-/-}$ elevated peptide sequences are highlighted in bold.

Protein (peptide region)	Peptide Sequence	Fold Change
DPP4 ^{-/-} Elevated Peptides		DPP4 ^{-/-} / DPP4 ^{+/+}
Leucine-rich repeat-containing protein 4B(239-	LP FGDEDALK	2.92**
248)		
Low-density lipoprotein receptor-related protein 2	TP GYTATEDTFKDTAN	3.19*
(4637-4652)		
Major urinary protein 2(110-118)	IP KTDYDNF	5.29**
MKIAA0248 protein(1790-1803)	TPRP TDPIPTSEVN	2.98*
Peptide Methionine Sulfoxide(238-249)	KP EFVDIINAKQ	2.34**

*, p<0.05

Table S8. Absolute fold changes of peptides identified in the OGE-Lane 3-4 fraction of the global peptide profiling experiments (N = 4) with $DPP4^{+/+}$ and $DPP4^{-/-}$ kidney samples. The preferred DPP4 truncation sites in the $DPP4^{+/-}$ elevated peptide sequences are highlighted in bold. The precursor amino acid for the $DPP4^{+/+}$ elevated peptides is shown in bold and parentheses.

Protein (peptide region)	Peptide Sequence	Fold Change
DPP4 ^{-/-} Elevated Peptides		DPP4 ^{-/-} / DPP4 ^{+/+}
Peroxiredoxin-5, mitochondrial(58-73)	IP SVEVFEGEPGKKVN	5.87**
DPP4 ^{+/+} Elevated Peptides		DPP4 ^{+/+} /DPP4 ^{-/-}
Putative uncharacterized protein OS=Mus	(P)STTVVPGAIISGQPPSFGQPLVF	7.15**
musculus GN=Dab2 PE=2 SV=1(301-323)		

*, p<0.05

Table S9. Absolute fold changes of peptides identified in the OGE-Lane 5-6 fraction of the global peptide profiling experiments (N = 4) with WT and DPP4^{-/-} kidney samples. The preferred DPP4 truncation sites in the $DPP4^{-/-}$ elevated peptide sequences are highlighted in bold.

Protein (peptide region)	Peptide Sequence	Fold Change
DPP4 ^{-/-} Elevated Peptides		DPP4 ^{-/-} / DPP4 ^{+/+}
3-hydroxyanthranilate-3,4-dioxygenase(158-	KPNP DQLLKELPFPLN	4.13**
173)		
Alpha-globin transcription factor CP2(108-115)	LPELNGKL	5.49**
ATP synthase-coupling factor 6, mitochondrial	FP TFKFD	7.74*
(90-96)		
Cytochrome b-c1 complex subunit Rieske,	VP AASEPPVLDVKRPFL	3.24**
mitochondrial(34-50)		
Cytochrome c oxidase polypeptide 6A1(49-57)	LPGVGVSML	2.01**
Fructose-bisphosphate aldolase B(5-13)	FP ALTPEQK	26.5**
Microtubule-associated protein tau(538-546)	APVPMP DLK	6.69**
Non-specific lipid-transfer protein(466-480)	GP GGKEATWVVDVKN	3.40**
PDZK1-interacting protein 1(90-113)	FRSSEHKNAYENVLEEEGRVRSTP	7.92**
Putative uncharacterized protein OS=Mus	KP QAQEQPPASPEALRG	4.02*
musculus GN=Prodh PE=2 SV=1(22-38)		
Solute carrier family 22 member 12(3-17)	FP ELLDRVGGLGRFQ	4.74**

*, p<0.05

Table S10. Absolute fold changes of peptides identified in the OGE-Lane 7-12 fraction of the global peptide profiling experiments (N = 4) with WT and DPP4^{-/-} kidney samples. The preferred DPP4 truncation sites in the $DPP4^{-/-}$ elevated peptide sequences are highlighted in bold.

Protein (peptide region)	Peptide Sequence	Fold Change
DPP4 ^{-/-} Elevated Peptides		DPP4 ^{-/-} / DPP4 ^{+/+}
Collectrin(18-29)	HP DAENAFKVRL	2.89*
Cytochrome c oxidase polypeptide 6A1(84-95)	KPFP WGDGNHTL	3.65**
Protein kinase c and kinase substrate in	KP GSNLSVPSNPAQSTQLQ	10.9**
neurons protein 2(340-358)		

*, p<0.05

Table S11. $DPP4^{\prime-}$ elevated kidney peptides detected by application of either SCX or OGE electrophoresis fractionation during 2D fractionation, which were also detected by standard 1D RP-HPLC MS methods. The preferred DPP4 truncation sites in the $DPP4^{\prime-}$ elevated peptide sequences are highlighted in bold.

SCX Fractionation	
	OGE Electrophoresis Fractionation
Atp6v1g1(107-118) RP EIHENYRING	Atp6v1g1(107-118) RP EIHENYRING
CtsB(74-86) LPETFDAREQWSN	Mepβ(21-41) LPAP EKFVKDIDGGIDQDIFD
EF-1α(281-291) ΑΡ VNVTTEVKS	Slc9a3r1(275-296)
	SPRP ALARSASSDTSEELNSQD
Mepβ(21-28) LPAP EKFV*	Slc22a12(3-20) FPELLDRVGGLGRFQ
* = Partial Match	

Table S12. Absolute fold changes of peptides identified in the salt free SCX fraction of the global peptide profiling experiments (N = 4) with $DPP4^{+/+}$ and $DPP4^{-/-}$ gut samples applying SCX-RP-peptidomics workflow. The preferred DPP4 truncation sites in the $DPP4^{-/-}$ elevated peptide sequences are highlighted in bold.

Protein (peptide region)	Peptide Sequence	Fold Change
DPP4 ^{-/-} Elevated Peptides		DPP4 ^{-/-} / DPP4 ^{+/+}
Chymotrypsinogen B(21-28)	VP AIQPVL	5.86**
Chymotrypsinogen B(21-28)	VP AIQPVLTG	9.83*
VIP Peptides(26-33)	WP LFGPPS	1.91*

*, p<0.05

Table S13. Absolute fold changes of peptides identified in the SCX-40 mM KCl free fraction of the global peptide profiling experiments (N = 4) with $DPP4^{+/+}$ and $DPP4^{/-}$ mice guts applying SCX-RP-peptidomics workflow. The preferred DPP4 truncation sites in the $DPP4^{/-}$ elevated peptide sequences are highlighted in bold.

Protein (peptide region)	Peptide Sequence	Fold Change
DPP4 ^{-/-} Elevated Peptides		DPP4 ^{-/-} / DPP4 ^{+/+}
40 S ribosomal protein S20(9-19)	TP VEPEVAIHR	4.93*
Actin, cytoplasmic 2(31-38)	FP SIVGRP	5.68*
Actin, cytoplasmic 2(242-254)	LP DGQVITIGNER	6.30*
Alpha-actinin-4(885-901)	AP YQGPDAAPGALDYKS	4.94*
Alpha-actinin-4(885-902)	AP YQGPDAAPGALDYKSF	6.03*
Cathepsin B(80-89)	LP ETFDAREQ	1.64**
Ezrin-radixin-moesin-binding phosphoprotein 50	IP SQEHLDGPLPEPF	6.39*
(240-254)		
Glyceraldehyde-3-phosphate dehydrogenase	IP ELNGKTG	14.95*
(219-228)		
Inorganic pyrophosphatase(276-283)	LP TDVDKW	4.32*
Junction plakoglobin(709-717)	VP LDPLDMH	11.13**
Profilin-1(44-54)	TP AEVGVLVGK	6.45*
Putative uncharacterized protein GN=Pdlim1,	SPAP STRVITNQYNSPTG	2.29*
PE=1, SV=1(130-147)		
Tripeptidyl-peptidase 1(497-507)	PP LGFLNPRLY	2.31*
Tubulin alpha-1B chain(71-83)	EP TVIDEVRTGTY	1.80*
Uncharacterized protein C19orf21(479-490)	VP DVPQGTETPH	3.04*

*, p<0.05

Table S14. Absolute fold changes of peptides identified in the SCX-100 mM KCl free fraction of the global peptide profiling experiments (N = 4) with $DPP4^{+/+}$ and $DPP4^{-/-}$ gut samples applying SCX-RP-peptidomics workflow. The preferred DPP4 truncation sites in the $DPP4^{-/-}$ elevated peptide sequences are highlighted in bold.

Protein (peptide region)	Peptide Sequence	Fold Change
DPP4 ^{-/-} Elevated Peptides	-	DPP4 ^{-/-} / DPP4 ^{+/+}
Defensin-related cryptdin-5(20-33)	DP IHKTDEETNTEE	6.27*
Histone H2B type 1-M(110-122)	HAVSEGTKAVTKY	10.55**
Plasminogen activator inhibitor 1 RNA-binding	RP DQQLQGDGKLIDR	7.94*
protein(112-126)		
Putative uncharacterized protein GN=Tf, PE=2,	GREEKPAASDSSGKQSTQVMA	18.86**
SV=1(94-114)		
Secretogranin-1(21-35)	AP VDNRDHNEEMVTR	29.85*
* - 0.05		

*, p<0.05

Figure S1. Measurement of DPP4 activity from kidney lysates. Kidney samples were dounced homogenized in 25 mM Tris-HCl, 140 mM NaCl, 10 mM KCl, pH 7.5, 0.1% BSA followed by centrifugation at 20,800 x g for 20 min at 4 °C. Heat treated samples were microwaved in water at high power for 2 min prior to homogenization. The lysate concentrations were obtained using a Bradford assay and the activity assay was run in the same buffer that was used to dounce the samples using 50 µg of total protein (100 µL of a 0.5 mg mL⁻¹ lysate) and 22.5 µM of the substrate, H-GlyPro-AMC (aminomethylcoumarin), in a final volume of 100 µL. The reaction was monitored by measuring the fluorescence increase associated with the liberation of the AMC group at 360 nm using a Spectramax plate reader. A standard curve was run with each sample and used to determine the absolute amount of AMC generated during the reaction. These results show that pre-heating samples is able to inactivate DPP4. Actual values for peak heights are given in parenthesis above each bar.

Figure S2. Peak integration of the leucine heavy-label peptide standard, RPGL*L*DL*KGKAKWD, in the presence (area: $5.6\pm0.4 \times 10^6$) and absence (area: $66.5\pm4.2 \times 10^6$) of *DPP4*^{-/-} sample background.

Figure S3. Comparison of the shape and areas of the MS peak for the vacuolar H+ ATPase, G1 subunit peptide RPEIHENYRING (z: +3; m/z: 499.92) collected in- A) Full MS (Most Gaussian peak shape; Area: $3.3x10^7$), B) Top 3 tandem MS (Area: $7.9x10^6$), C) Top 6 tandem MS (Area: $6.3x10^6$), and Top 10 tandem MS (Least Gaussian peak shape; Area: $3.2x10^6$) modes. As peak shape becomes more jagged (i.e., top-to-bottom) XCMS cannot accurately identify and integrate peaks. Therefore, samples are run using full MS (top) for accurate ion quantification by XCMS.

Figure S4. Order of peptide elution from a PolySULFOETHYL A[™] SCX column-Fraction A (40 mM KCI): LPLFDRVLVE, +2; Fraction B (100 mM KCI): LPAPEKFVKDIDGGIDQDIFD, +3; Fraction C (200 mM KCI) GLLDLKGKAKWD, +4; and Fraction D (400 mM KCI): RPGLLDLKGKAKWD, +5.