Supplemental Text 1: Other Existing Tools for SRM Method Creation and Analysis

Proprietary software:

- Agilent MassHunter Workstation
- Applied Biosystems MRMPilot
- Applied Biosystems MultiQuant
- Thermo-Fisher PinPoint
- Waters TargetLynx
- Single Organism Mr. M (Sherwood et al., 2009)

Freely available software:

- MaRiMba (Sherwood et al., 2009) Transition list creation
- MRMaid (Mead *et al.*, 2008) Transition list creation
- MRMer (Martin et al., 2008) Result data viewing and peak integration
- TIQAM (Lange et al., 2008) Transition list creation

Supplemental Text 2: Skyline Supported File Formats

Transition list output formats:

- Agilent
- Applied Biosystems
- Thermo Fisher Scientific
- Waters

Mass spectrometry data import formats:

- Agilent
- Applied Biosystems (with ProteinPilot 3.0 Trial Edition installed) <u>https://products.appliedbiosystems.com/ab/en/US/adirect/ab?cmd=catNavigate2&catID=601680&tab=DetailInfo</u>
- Thermo Fisher Scientific
- Waters (with MassLynx 4.1 installed)
- mzXML (Pedrioli *et al.*, 2004)
- mzML (Deutsch, 2008)

Publicly distributed spectral library formats:

- BiblioSpec (Frewen *et al.*, 2006) http://proteome.gs.washington.edu/software/bibliospec/documentation/libs.html
- Global Proteome Machine (GPM), X! Hunter (Craig *et al.*, 2006) <u>ftp://ftp.thegpm.org/projects/xhunter/libs/</u>
- National Institute of Standards and Technology (NIST) (Toner, 2008) <u>http://peptide.nist.gov/</u>
- SpectraST (Lam *et al.*, 2007) http://www.peptideatlas.org/speclib/

Peptide search engine result formats for building spectral libraries:

- Mascot (Perkins *et al.*, 1999)
- IDPicker (Ma et al., 2009)
- Trans Proteomic Pipeline (Keller *et al.*, 2005) pepXML and mzXML (Pedrioli *et al.*, 2004)
- X! Tandem (Craig *et al.*, 2004)

References

Craig, R. and Beavis, R.C. (2004) TANDEM: matching proteins with tandem mass spectra. Bioinformatics 20, 1466-1467.

Craig, R. et al. (2006) Using Annotated Peptide Mass Spectrum Libraries for Protein Identification. Journal of Proteome Research 5 (8), 1843-1849

Deutsch, E. (2008) mzML: A single, unifying data format for mass spectrometer output. Proteomics 8 (14), 2776-2777

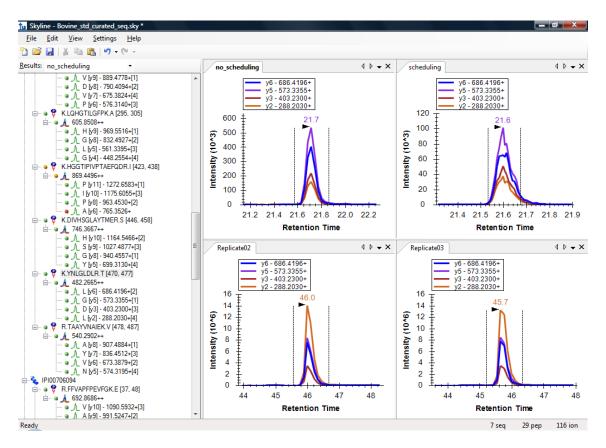
Frewen, B.E. et al. (2006) Analysis of peptide MS/MS spectra from large-scale proteomics experiments using spectrum libraries. Anal. Chem., 78 (16):5678-84

Keller, A. et al. (2005) A uniform proteomics MS/MS analysis platform utilizing open XML file formats. Mol. Syst. Biol., 1, 1–8.

Lam, H. *et al.* (2007) Development and validation of a spectral library searching method for peptide identification from MS/MS. *Proteomics* **7**, 655–667 Lange, V *et al.* (2008) Targeted quantitative analysis of Streptococcus pyogenes virulence factors by multiple reaction monitoring. *Mol. Cell. Proteomics* **7**, 1489-1500

Ma,Z.Q. et al. (2009) IDPicker 2.0: Improved protein assembly with high discrimination peptide identification filtering. J. Proteome Res. 8(8):3872-81 Martin,D et al. (2008) MRMer, an Interactive Open Source and Cross-platform System for Data Extraction and Visualization of Multiple Reaction Monitoring Experiments. Mol. Cell. Protoemics 7:2270-2278

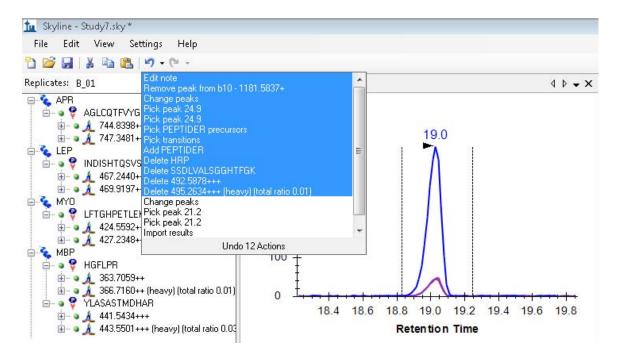
Mead, J et al. (2008) MRMaid: the web-based tool for designing multiple reaction monitoring (MRM) transitions. Mol. Cell. Proteomics 8:696-705

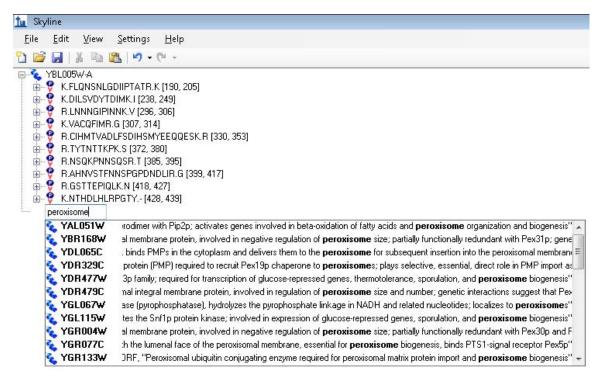

Pedrioli, P.G. et al. (2004) A common open representation of mass spectrometry data and its application to proteomics research. Nat. Biotechnol., 22, 1459–1466.

Perkins, D.N. et al. (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20, 3551–3567

Sherwood, C et al. (2009) Rapid optimization of MRM-MS instrument parameters by subtle alteration of precursor and product m/z targets. J. Proteome Res. 8 (7):3746-51.

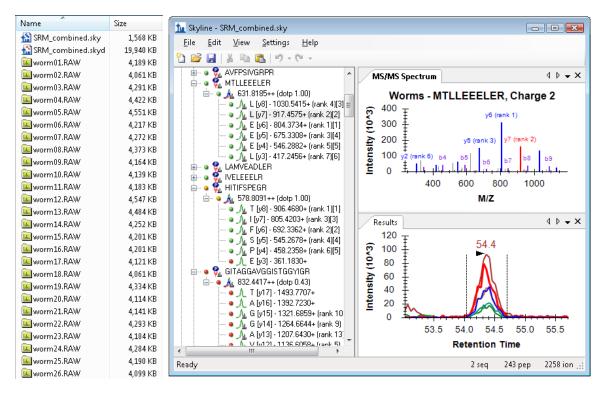
Sherwood, C et al. (2009) MaRiMba: A Software Application for Spectral Library-Based MRM Transition List Assembly. J. Proteome Res. 8 (10), pp 4396–4405

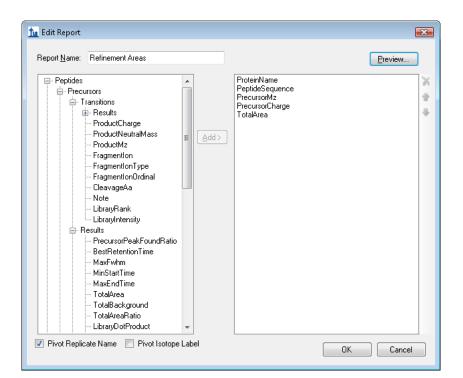

Toner, B. (2008) NIST Team Building Peptide Spectral Library To Improve Mass-Spec Proteomics Analysis. Bioinform


Supplemental Figure 1. Vendor neutral data sharing support in Skyline. This support is illustrated using data acquired for a single set of peptides and transitions on an Applied Biosystems 4000 Q Trap in the top 2 panes, with data acquired on a Thermo-Fisher Scientific TSQ-Quantum Ultra in the bottom 2 panes. In this example, the investigator can clearly see the change in ion ratios between the two instruments.

	Import Results Files	? 🗙
Export Transition List Instrument type: OK	Look jn: 🛅 All Types 🗸 🔇 🎓 🖽 -	
ABI Agilent Thermo Water meurou per proteiñ	My Recent Documents My Recent Luk MixC-dMRM-06.d Ikk Bovine_Mix_Replicate02.RAW Ikk CPTAC_7_3_080829.wiff Ikk silac_1_to_4.mzXML	
Multiple methods Ignore proteins Max concurrent transitions: 120	Desktop	
Optimizing: None	My Documents	
Method type: Scheduled	Source name: All Types My Computer Sources of type:	Open Cancel

Supplemental Figure 2. The Export Transition List and Import Results Files dialogs in Skyline. These dialogs show the full range of SRM instrument support options available only in Skyline. Here the Export Transition List dialog shows support for creating transition lists ready for use on Agilent, Applied Biosystems, Thermo-Fisher Scientific and Waters instrument. Additionally, the Import Results Files dialog shows support for importing the native files from these instruments as well as the portable mzML and mzXML formats.


Supplemental Figure 3. Skyline shows the full history of actions performed on this document in its undo list. This full history enables the document to be restored to any state in the editing session at a single mouse click.


Supplemental Figure 4. Screenshot showing the auto-completion capability in Skyline. As an example, when the user types the word "peroxisome" any of yeast proteins from the Background Proteome containing that word in the description can be added to the document by simply selecting it form a list. Skyline also offers auto-completion against the Background Proteome for peptide sequences and protein accession numbers.

🏦 Build Library	×	1 Build Library	×
Name: MacLean Pipeline Qutput Path: C:\Users\brendanx\Downloads\MacLean_Pipeline.blib Action: Create V Keep redundant library Qut-off score: 0.95 Lab Aythority (e.g. proteome.gs.washington.edu): proteome.gs.washington.edu Library ID: MacLean_Pipeline	Browse	Input Files: databases\Leptospira.blib fract\xtandem\xt_bov_mini_fract\CAexample_mini1.xtan.xml fract\xtandem\xt_bov_mini_fract\CAexample_mini2.xtan.xml fract\xtandem\xt_bov_mini_fract\CAexample_mini3.xtan.xml fract\xtandem\xt_bov_mini_fract\CAexample_mini3.xtan.xml fract\xtandem\xt_bov_mini_fract\CAexample_mini3.xtan.xml fract\xtandem\xt_bov_mini_fract\CAexample_mini3.xtan.xml fract\xtandem\xt_bov_mini_fract\CAexample_mini3.xtan.xml fract\xtandem\xt_bov_mini_fract\CAexample_mini3.xtan.xml fract\xtandem\xt_bov_mini_fract\CAexample_mini3.xtan.xml fract\xtandem\xt_bov_mini_fract\CAexample_mini4.xtan.xml fract\xtandem\xt_bov_mini_fract\CAexample_mini4.xtan.xml ibtrary\Mascot15N\F027754.dat ibtrary\Mascot15N\F027751.dat ibtrary\Mascot18N\F027751.dat ibtrary\Mascot18N\F027754.dat ibtrary\Mascot18N\F027754.dat ibtrary\Mascot12N\F027754.dat ibtrary\Kandem\Kc_bVV\F02N\F027754.dat ibtrary\Kandem\Kc_bVV\F	Add <u>Files</u> Add <u>Directory</u>
< <u>P</u> revious Next >	Cancel	< <u>P</u> revious Finish	Cancel

Supplemental Figure 5. The Skyline library build wizard simplifies the creation BiblioSpec MS/MS spectral libraries from experimental peptide search results. Support for a variety of formats is shown with a complete list supplied in Supplemental Text 1.

Supplemental Figure 6. The Skyline high-performance data file can handle very large experiments without loss in performance. Experiments requiring over 50 individual native instrument files can be stored efficiently in a single file, often at a fraction of the size of the instrument native files. This figure shows 26 of the 55 instrument files from a TSQ-Quantum Ultra required to measure the original 2908 transitions in this document. The resulting SRM_combined.skyd Skyline data file, requiring 1/10th the disk space of the original RAW files, is shown above. Once the import is complete, this file can be easily shared with collaborators and opened in a fraction of a second without the native instrument files.

	ProteinName	PeptideSequence	PrecursorMz	PrecursorCharge	102_REP1 TotalArea	102_REP2 TotalArea	102_REP3 TotalArea	103_REP1 TotalArea	103_REP2 TotalArea	103_REP3 TotalArea	108_REP1 TotalArea
	IPI:IPI00231736	GILAADESVGS	674.842484	2	18595	22514	14353	12133	2636	8298	2529
	IPI:IPI00231736	CSLPRPWALTF	905.956506	2	57186	40550	37921	24490	22618	4180	44041
	IPI:IPI00327469	LGGEEVSVACK	574.784438	2	19631	15293	11683	18984	11676	7772	31807
	IPI:IPI00327469	VGQPGDAGAAG	923.965059	2	4234115	2923049	2760665	2786959	2111084	1944862	4798247
	IPI:IPI00209744	GSYNLQDLLAQ	710.875173	2	42075	36186	34892	14334	13398	5709	23758
	IPI:IPI00372372	DIPVNPMCIYR	689.336315	2	1460	5727	882	1090	78	1033	849
	IPI:IPI00372372	LQPLDFK	430.747453	2	1696305	1204367	1328984	642230	478379	544093	773044
	IPI:IPI00372372	SQLPGIIAEGR	570.822212	2	101630	93094	77583	33321	28998	31786	38163
	IPI:IPI00197703	DFATVYVDAVK	614.316428	2	722875	601897	572850	1858199	1514414	71595	2427363
	IPI:IPI00197703	DYVSQFESSTLGK	730.848821	2	330468	265428	240715	615321	570887	52172	879804
	IPI:IPI00197703	FGLYSDQMR	558.760766	2	36555	24330	19711	14828	25501	11641	32280
	IPI:IPI00197700	TGTNLMDFLSR	627.810987	2	113251	74905	93308	80341	70503	244	84821
	IPI:IPI00197700	LMSPEEKPAPAAK	684.86322	2	141215	103027	66785	113399	84342	66568	131826
	IPI:IPI00204118	LNDGSQITFEK	626.314417	2	1834	14307	13471	37658	34172	3485	58471
	IPI:IPI00204118	ATAQDNPK	422.711599	2	479258	7905	72653	1087070	684542	180099	726931
	IPI:IPI00454534	GTITSIAALDDPK	651.350999	2	76283	68356	56940	48345	56241	2692	64265
	IPI:IPI00454534	TQTPVQGCHLE	924.954691	2	129958	96878	86189	80725	64560	67880	145435
	IPI:IPI00454534	IFPENNIK	487.768917	2	644557	540802	493485	196435	162621	349	200994
	IPI:IPI00198667	SLLNSLEEAK	552.300778	2	1394596	1216738	1161751	1220653	1096191	1005717	1787356
_	IDI-IDI00100007		CC0 040701	2	100050	150/67	140007	105740	100405	10100	102540

Supplemental Figure 7. The Skyline custom report designer helps users quickly export data into tabular formats compatible with Excel and R.. The report shown supplies total peptide area for all peptides measured pivoted on the replicate name. This format greatly simplifies using Excel to perform statistical tests for significant change in peptide abundance between replicates from cases and controls.