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1. Outline of the Proofs of Theorems 1 and 2

We assume the following conditions hold : (T;,C;, Z;),i = 1,...,n are independent and
identically distributed; Pr(Y'(7) > 0) > 0; | Z;;(0)| + [; |dZiju(u)] < C. < oo almost surely
for some constant C',; The matrix A(3,) is positive definite; fOT Ao(t)dt < oo; For d =0,1,2,
there exists a neighborhood B of B, where s(¥(3,t) are continuous functions of 3 € B,
bounded on B x [0, 7], and s() is bounded away from zero on B x [0, 7].

The following additional conditions are also needed to ensure the desired asymptotic

convergence of case-control samples: For s = 0,1 as n — oo, o> converges to a constant
S

as € (0,1) where ay is the realization of a function a(W) of a random variable W evaluated

at W =3, i.e. a(W)|w=s = as; =L converges to a constant wg, € (0,1) forall h =1,..., Hy

Ns

where H, is the number of post-stratified groups in sth stratum; = converges to a constant
ps € [0,1] for s = 0,1 as n — oo where p; + py = 1.
Here and in what follows || - || is the Euclidean norm for vectors or matrices.

The following lemmas will be frequently used in proving the theorems.

LEMMA 1: Let f,(t) and g,(t) be two sequences of bounded functions. For some constant

T, assume that the following conditions (a) - (c¢) hold where

(a) supgc;<, || £ (1) — f£ ()| — O, for some bounded function f(t),
(b) {f,.(t)} are monotone on [0, 7] and

(c) supg<icy |gn(t) — g(t)| — O where g(t) is continuous on [0,7]. Then

t t

sup || [ £.()dgn(s)— / FEg() — 0. s | [ gu(s)af, (o)~ / 9()dF (s)] — 0.

o<t<r Jo 0<t<r
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LEMMA 2: Let W, (t) and G,(t) be two sequences of bounded processes. For some con-

stant T, assume that the following conditions (a) - (c¢) hold where

(a) supg;<, |[Wa(t) — W(t)] 250 for some bounded process W (t),
(b) W, (t) is monotone on [0, 7] and

(c) Gn(t) converges to a zero-mean process with continuous sample paths. Then

p
— 0, sup
0<t<r

sup
0<t<r

[ cuorwao-wiy| o

/0 (Wa(s) — W (£)}dG(s)

LEMMA 3:  Suppose a cohort of size n can be divided into S mutually exclusive strata and
this stratification is based on a discrete random variable W whose information is available
for all the cohort members. Let ng denote the size of the sth stratum (s = 1,...,S5). Let
Xsj's be independent and identically distributed random variables and &,; = (&s1y -5 Esms)
be a random vector of ng ones and ng — ng zeros with each permutation equally likely. Let
Nneg = Z;Lil &s; denote the sample size drawn from the sth stratum. Then

S ns ..
U, = 12 ; ; (ﬁ - 1) X,

converges to a zero-mean normal random variable with the following covariance function

E { (ﬁ - 1) Var(XWl\W)}

provided that

(G)ELPSEP(WZS)G(QJ) and Ei>0z8€(0,1) as n — 0o, where
n Ng

o 18 the realization of a function a(W) of a random variable W evaluated at

W =s, i.e. a(W)|lw=s = as,



I & _
— D (X = X.)? 5 02 = Var(Xy [V = s) # 0 where

j=1
X, = i iXSj’ and
ns
max(X,; — X,)?
Z?il(ij - Xs)2

(b) 82 =

(c)

—0as n— o0 fors=1,...,8.

LEMMA 4: Suppose that within each stratum S we have further classified the sample into
H, mutually exclusive groups based on a discrete random variable V' and the sizes of strata,
nen, forh=1,...,Hy, s=1,...,8, are known. Let ng, = Z?;’l &sn; denote the sample size

drawn from the hth stratum in the sth stratum. Then

_ . —1/2 SR gshj . )
Un—n ZZZ 1 Xshj

e e A VAL

converges to a zero-mean normal random variable with the following covariance function

1
E { <—OK(W) — 1) Var(XWVlﬂ/V, V)}
provided that

(a) 22 L po= POW = 5) € (0,1), 22 L gy = P(V = h|W = 5) € (0,1), and

n s

s , o :
= 2. a,€(0,1) as n— oo, where ay is the realization of a function a(W)
Mg

of a random variable W evaluated at W = s, i.e. a(W)|w=s = as,

1 Nsh _
(b) S% = > (Xapj — Xan)? = 02, = Var(Xyv1 [W = 5,V = h) £0
Ngsh — 1 1
_ 1 Nsh
where X, =

E Xshja and
Ngp <
7j=1

maX(Xshj — Xsh)z
St (Xanj — Xan)?

(c)

—0asn—o0 fors=1,...,S andh=1,... H,.

Proof of Theorem 1 We first consider the proof of the consistency of U(3,). Denote
n~! times Tj(ﬁ) by U,(3). Based on a straightforward extension of Foutz (1977), one can

show 3 to be consistent for B, provided: (i) OU,(8)/0B8" exists and is continuous in an
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open neighborhood B of B, (ii)0U ,.(B,)/0B: is negative definite with probability going to
one as n — oo, (iii) OU,,(B)/08" converges to A(B,) in probability uniformly for 8 in an
open neighborhood about 3, and (iv) U, (8) — 0 in probability.

One can write

algg(jﬂ/@) — _p! /(: V(ﬂ,t)dN(t) where N(t) = :1 ;wiNzk(t)a
~(2) gW
&y | 87(B, )58, t) - ( B, )%
wi = > dV(ﬂ,t)—{ SO)(8,1)2 } W

Then, (i) is clearly satisfied on the basis of (1) and by the continuity of each component.

Now, following Andersen and Gill (1982),
U
I(-5557) -] <

Z /T{V(ﬁ,t) —v(B,t)}n T dN,(t)

+ Z/ {V(B,t) —v(B, t)}dn‘lz( i — 1) Nix(t)
. Z / (8. On= (1) Z (=) [ (B0
. / v(ﬂ,t>{3<°><ﬁ,t>—s<°><ﬁ,t>}Ao<t>dtH 2)

where Ni(t) = S0 Nig(t) and My (t) = S0 Mi(t).

Each of the terms on the right side of the above inequality can be shown to converge to
zero, uniformly in B € B. The first and the third terms can be shown to converge to 0 by
the Lenglart inequality for n™'Ny(7) and n™' 37 | [T v(B,t)d My (t), respectively (Andersen
and Gill, 1982, p1115). The second and the fourth terms can be shown to converge to 0 by
applying lemma 3.

The last term on the right side of (2) can be shown to converge to zero in probability,

uniformly in 3 € B as n — oco. Therefore,

_8(;;?) LN A(B) as n — oo uniformly in 3 € B

and, thus, (i) and (iii) are satisfied.




For (iv), we can show that n~'/2U (8) is asymptotically equivalent to n~/2 37 | S78 M5 .
Specifically, write

)
nl/2 —n_1/2 w; A ( ”
U, Z}j/ { +0~ Soa1 )}dM ®

i=1 k=1

_1/222/ w; Z (B, t)d My (t)

i=1 k=1

n-1/2 w: _S (B,1)
¥ ZZ/ { (8.1) A(B’t)}deU

=1 k=1
=U; + U,
Now, we can show that U; converges to zero in probability as n — oo. Write Uy = Uy + Uso

ey /{ y (B.1)

i=1 k=1 (B>)

st
SO(8,t)
U22 = Z/(;T {e(ﬁ,t) S } { —1/2 p— 1)Mzk(t>}

Note that, for fixed ¢, n=%/23" Mlk(t is a sum of i.i.d. zero-mean random variables.

where

}dMZk( ) and

M;(t) can be shown to be of bounded variation and therefore can be written as a difference
of two monotone functions in ¢. It then follows from the example of 2.11.16 of van der
Vaart and Wellner (1996, p215) that n=Y23"" | M;.(t) converges weakly to a zero-mean
Gaussian process, say Wy (t). It can be shown that E{Wj;(t) =W (s)}* < C{Ao(t)—Ao(s)}?
for some constant C' > 0. Thus, by the conditions on Ay(t), 3 a constant M, such that
Ao(t)—Ao(s) < M(t—s). Then, by the Kolmogorov-Centsov Theorem (Karatzas and Shereve,
1988, p53), Wi, (t) has continuous sample paths.

In addition, S© (B,t) and S(l)(ﬁ,t) can be written as a sum of two monotone functions

in ¢, respectively. By applying lemma 2 twice, we have

A()
Z/{ gt S (ﬂt} _1/2ZdM LOasn—M)o.

In similar manners, U;; can be shown to converge to zero in probability as n — oo.
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Specifically, the finite dimensional convergence of the n=%/23"" (w; — 1)M(t) to a zero-
mean normal random variable follows from lemma 3. The tightness follows from the example
3.6.14 of van der Vaart and Wellner (1996, p356). The limiting process can be shown to have
continuous sample paths via the Kolmogorov-Centsov Theorem (Karatzas and Shereve, 1988,
p53). It then follows from lemma 2 that Uss converges to zero in probability as n — oo. Hence,
U, converges to zero in probability as n — oo.

Now, one can write U; = Uy; 4+ Ujs where

Then, under the regularity conditions, the first term is asymptotically zero-mean normal

with covariance matrix Q(3,) by Spiekerman and Lin (1998). The second term can be shown
to be asymptotically zero-mean normal with covariance matrix V' (83,) by lemma 3. Note
that Uy and Ujs are independent since Cov(Uyy, Ure) = E(U11Ur2) = E(E(UnU2|F(7))) =
E(Un1 E(U2|F(7))) = 0.
Therefore, n'/2U,(B) is asymptotically normally distributed with mean zero and with finite
variance Q(8,)+V (8,). Hence U,,(8) converges to zero in probability. Thus, (iv) is satisfied.
By (i),(ii),(iii) and (iv), it follows that there is a unique sequence 8 s.t. U(3) = 0 with
probability converging to one as n — 0 and with B converging in probability to B, by
extension of Foutz (1977, Thm.2).

The asymptotic normality of B follows from the consistency of B and a Taylor series
expansion of U ().

Proof of Theorem 2 One can make decomposition

n'2{Ao(B,t) — Ao(t)}

_ 12 )R (7 ' dN(“) 1/2 ' dN(“)



/2 / tmd.ﬂ(u) where (3)
Z;(wz 10— [ w¥ilel Zuangw)

One can write the first term of (3) a

1 —1/2 7,
Z/ < ﬁ o) (0)(ﬂ0,u)) dn /Mk(u)
1 v
Z/ < 0(B.u) SO u)>d{n /Z(wi_UM““(u)} @

=1

~!around 3, together with the consistency of 3,

By the Taylor expansion of S©(3,u)

(8, u), S(l)(ﬁ*, u) and the weak convergence of n=1/2>"" | My (t) with continuous sam-
ple paths, the first term of (4) converges to 0 uniformly in ¢ in probability by applying lemma
2. By the same argument, together with the weak convergence of n=4/23""  (w; — 1) My (t)
with continuous sample paths, it follows from lemma 2 that the second term of (4) converges
to 0 uniformly in ¢ in probability. Combining these results, the first term of (3) converges to
0 uniformly in ¢ in probability.
Again, by the Taylor expansion of SO (B,u)_l around (3,, the asymptotic expansion of
n'2(3@ — B,) along with the consistency of S©(8,,u), SO(8*,u), 8 (8", u), B and the
boundedness condition on Ay(7), it follows that the second term of (3) is

. 8(1) " T K n

k=1 i=1
One can write the third term of (3) as

V2SS M (o S R 2N 1Mo
Z/ G ﬁm ;Mm( )Jr;/() §<0)(50,u)d{ ;( i — 1) M ( )} (5)

By applying lemma 2, each of these two terms can be shown to be asymptotically equivalent
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to Zk 1f0 (0) d{n_1/2 Zz 1Mlk }and Zk 1f0 S(o) d{n_1/2 i= 1( ‘_1)M ( )}>
respectively.

By combining the results, we have

1/2/ A - —1/2 L ‘ dMZ ) —1
(B0~ o) =SS [ 07 @M (80|
_ & ¢ dMZ Uu 1

o zz<>{ [ 07 M 050

= U1A<ﬁ07t) + Ué\<ﬁ07t)
The first term converges weakly to a zero-mean Gaussian process with covariance function
o(t1,t2) at (t1,t2) (Spiekerman and Lin, 1998). The weak convergence of the second term
to a zero-mean Gaussian process with covariance function o(ty,t2) at (¢1,t2) follows from
lemma 3 and the example 3.6.14 of van der Vaart and Wellner (1996, p356). Note that
these two terms are independent since Cov(U{, UY) = E(UMUY) = E(E(UMULF(1))) =

E(UrE(ULF(7))) = 0. This completes the proof.

2. Consistent estimators for the asymptotic variances

In Theorem 1, A(3,), Q(B,) and V(B,) can be consistently estimated by A(3), Q(3) and

A~ ~

V(3) where

n Tz (x. (1
o ' S ApYi(Xp)eP Zirtan Z,(X,) — s )(ﬁ;Xﬂ)
=1 i=1 SO(8; Xj) ’ SOB: X)) |



K
Var (Z M3 ,.(8)

k=1

K
A = s) is a sample variance of {Z lek(B)

k=1

In Theorem 2, ¢(ty,15)(B,) and o(ty,t2)(B,) can be consistently estimated by ¢(t1,t)(3)

and 6 (t1,15)(3) where

é(thtz sz (Z dir (3, tl)) <Z éim(ﬁa@)) ;

k=1 m=1

1
a-(tlth)(ﬁ) Zps COV (Z ¢1k /3 tl Z¢1m ﬁ t2 AH = S) ,
s=0
. [ dM,-k(u) - )
qbzk(ﬁa t) - 0 S,(O) (ﬁ, u) + R(Ba t)TA (B)Mz,zk(/g)a

/t d M, (u) O ARI(Xy, < 1)
0 S(O)(ﬁ,u) S(O)(B>Xik)
—n n ", Z AI(Xj < t)y (X jl)eﬁ Z (X ;0)

[y

=1 =1 (5 it)? 7
n K
RB.1) = —n"S w Azl](le <t)S (ﬂ Xa) and
=1 =1 (ﬁv XZ )
/K K
Cov (Z o1(8, 1), Z O1m (B, t2)| A = s) is a sample covariance for
Kk:j A Km:Al A
{ (Z Su(Bt1), > ¢1m(ﬂ,t2)> Ay = s} for s =0, 1.
k=1 m=1

In Theorem 3, A(3,), Q(8,) and V .(3,) can be consistently estimated by AC(BC), QC(BC)

and V.(3,) where

AB) = 1 P Qs = Y (Z M;,Z-k<ﬁ>> ,

1  Hs
Vg =33 il ar(zmzm
s=0 h s

=1

Xll—h A11—$>,

= n
Var <ZM2,1k(ﬂ)i Xi=hA, = s) _ ! Zwi

k=1 i=1

K K
Sz - (Mo
k=1 k=1

®2
X =h, Ay = S>] 7

9

Aqy :s} for s =0,
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(1) n
Y c (/67 Xz ) —
Mra = {Z“<X“> - W} S
ﬁ Zy(x &M , ,
E JkY;l ) o\ e (/37X]k> L gz
" k=1 5(0 (5 ik) {Z”(ka) L0 (B, Xi) } W= (X, Air) and

Xa=hAjy = 5) )

In Theorem 4, ¢(t1,t2)(B,) and o4(t1, t2)(B,) can be consistently estimated by ¢.(t1,t,)(8.)

K
Xa=hAn= s)] is a local average of <Z Mczm(Bc)

k=1

(Z Mz,ik(ﬁo)
k=1

t=1,...,n using the partitions.

and 6.(t1, t2)(83,) where

do(tr, 12)(B) = n_lzwl (Z (8, ) <Z¢ (Bt ) )
0c(t1,t2)(B) = ZZ % Cov (Z $11(B, 1), Z P1m (B, t2)
h=1

s=0 k=1 m=1

X11—hA11—3>7

. t AN c

w0 - [ Wﬂ(f) R.(8.6)7 A7 ()M 4 (8).

A (n)  Aal(Xa 8 o~ Al (X < OVi(X)eB Zn
/05(0 (/37 )_ S(O (/3 ) n ;wjlzzl: AéO)(ﬁ’Xﬂ)g )

=~ zlg
R =S S 2
Xll—h A11—5>—n 1Z'LUZ
k

K A = P i=1
X Z¢fk(ﬁ tl (Z ¢zk ﬁ tl zl h Azl )]
:K ) ) K
X Z ¢fm(ﬁ7t2) - E (Z ¢2m(/37t2) Xil == h, Ail = S)] .

K K
Cov <Z¢1k B,t1), Z¢1m (B, t2)
- -

3. A sample S-plus/R script for parameter and variance estimation
The regression parameter estimates and their variance estimates can be obtained using any
standard statistical software which supports the incorporation of weights option (or an

offset option) and the calculation of dfbeta residuals (Therneau and Li, 1999). S-plus/R
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support all these necessary options. Here we provide a sample script of S-plus/R for the

calculation of the parameter estimates and their variance estimates below.

coxfit <- coxph(Surv(time,delta) z,weights=w)
dfb.coxfit <- resid(coxfit,type=‘dfbeta’,collapse=id)
var.full <- matrix(rep(0,p~2),nrow=p)
var.samp <- matrix(rep(0,p~2),nrow=p)
for (strt in 1:no.strt){
var.full <- var.full + inc.prob.vec[strt]*t(dfb.coxfit[ind.strt==strt,])
%*%dfb.coxfit [ind.strt==strt,]
var.samp <- var.samp + n.tilde.vec[strt]*(l-inc.prob.vec[strt])*

var (dfb.coxfit [ind.strt==strt,])

var.new <- var.full + var.samp

The coxph function with weights option enables one to obtain the regression parameter
estimates. Here time is observed failure times, delta is failure indicator, z is a covariate
and w is the inverse of the inclusion probabilities. The resid function provides the so-
called ‘DFBETAS’ which is essential in calculating the variance estimates. The collapse
option in resid function performs the summation of the ‘DFBETAS’ within each cluster.
The variable id is the cluster indicators. The variance estimates can then be calculated
using these summed ‘DFBETAS’. var.full is the variance due to the sampling of the
cohort and var.samp is the variance due to the sampling of the case-controls. strt is the
strata indicator and we have two strata(cases and controls). no.strt denotes this number of
strata. inc.prob.vec contains the inclusion probabilities for each stratum and n.tilde.vec
contains the number of samples in each strata as elements. var.new is the final variance

estimates which is the sum of the two components.
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4. Simulation results when the marginal distribution follows Weibull

Table 1 shows simulation summary statistics when the marginal distribution follows Weibull
distribution with the scale parameter and the shape parameter being set to 1 and 0.5, re-
spectively. The binary covariate which mimics our motivating dental example was considered
where the value of the first member is equal to one and the value of the second member is
equal to zero (Z;; = 1 and Z;5 = 0). The findings are similar to those of Tables 1 and 2 in

the main article.

[Table 1 about here.]
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Table 1

Summary of simulation results. Ziv = 1, Zio = 0. Failure times are from Weibull distributions with the scale

parameter and the shape parameter being equal to 1 and 0.5.

event mean indep. proposed  true 95%
0o n  proportion n Ty 3 s.e. s.e. S.D.  Coverage
0 1000 10% 185 0.83 0.013 0.1410 0.2106  0.2181 0.923
185 0.43 0.030 0.1423  0.2918  0.3052 0.934
185 0.29 0.041 0.1425  0.3030  0.3187 0.939
184 0.09 0.026 0.1424  0.3130  0.3183 0.951
20% 361 0.83 0.002 0.1000  0.0853  0.0850 0.945
361 0.43 0.005 0.1002 0.1362  0.1387 0.943
362 0.29 0.005 0.1000  0.1435  0.1435 0.952
360 0.09 0.003 0.1003  0.1517  0.1553 0.944
2000 10% 371 0.83 0.002 0.0992  0.1490  0.1536 0.934
371 0.43 0.022 0.0996  0.2048  0.2090 0.947
371 0.29 0.022 0.0996 0.2122  0.2143 0.953
371 0.09 0.022 0.0996 0.2182  0.2249 0.944
20% 724 0.83 0.002 0.0706  0.0602  0.0608 0.942
724 0.43 0.000 0.0706  0.0960  0.0953 0.952
724 0.29 0.003 0.0706  0.1015  0.1041 0.946
724 0.09 0.001 0.0706  0.1065  0.1051 0.953
0.693 1000 10% 184 0.83 0.729 0.1742  0.2617  0.2856 0.845
184 0.43 0.766 0.1792  0.3990 0.4212 0.935
185 0.29 0.773 0.1809  0.4169  0.4536 0.943
184 0.09 0.770 0.1831 0.4373  0.4919 0.944
20% 355 0.83 0.698 0.1215 0.1106  0.1098 0.945
355 0.43 0.704 0.1221  0.1808  0.1811 0.946
355 0.29 0.710 0.1221  0.1912  0.1926 0.946
353 0.09 0.702 0.1222  0.2019  0.2043 0.950
2000 10% 370 0.83 0.713 0.1212  0.1892  0.1976 0.920
370 0.43 0.735 0.1230  0.2803  0.2860 0.949
369 0.29 0.739 0.1235  0.2922  0.3075 0.941
370 0.09 0.730 0.1230  0.3003  0.3042 0.961
20% 711 0.83 0.697 0.0857  0.0778  0.0815 0.937
710 0.43 0.698 0.0858  0.1275  0.1281 0.952
711 0.29 0.700 0.0859  0.1349  0.1311 0.961
710 0.09 0.700 0.0859  0.1415  0.1399 0.953
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