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SUPPLEMENTAL INFORMATION

Model specification:

The possible causes of exposure for a farm in the region are C1, C2, . . . , C12. Causes C1, C2, . . . , C10 (feed
delivery, flock supervisor, chick delivery, live haul, management personnel, propane delivery, meter reading,
maintenance/repair, waste hauling and cake out, respectively) are cyclical events, in that we assume that
they occur at regular intervals throughout the growing cycle or the year concordant with our data. Of
these, C1, C2, . . . , C5 are assumed to operate within an integrator network only and C6, C7, . . . , C10 oper-
ate without regard to integrator affiliation. We made the assumption that these services occurred within
closed groupings of farms that were serviced by the same vehicle in an ordered manner, to simulate a service
cycle by a given service vehicle. As a result of this assumption, vehicles do not move randomly among
farms in the region but rather visit a set number of farms in a particular order that maintains the frequency
of visits depicted by our data. These vehicle groupings either existed within the integrator network (for
causes C1, C2, . . . , C5) or across the region, encompassing farms in different integrator networks (for causes
C6, C7, . . . , C10).

As described in the main text, we estimated the number of farms that a given service vehicle (by source)
could service per day using Monte Carlo analysis based on input provided by grower collaborators. The
results of these simulations, in conjunction with our contact rates by source, were used to calculate the
number of vehicles operating within the integrator network or region pertaining to each source.

The assumption of a highly structured set of constraints on commercial visits and service vehicles is reason-
able based on the highly integrated business model of the poultry industry, which is to ensure a continuous
delivery of a set number of market-ready poultry products to each processing plant.

Causes C11 and C12 (part-time workers and grower social visitors) were treated differently than the other
causes in the model. Contact from these causes were not assumed to be cyclical but rather took on random
mixing patterns or established probabilities of contact, as specified in the sections below. Based on survey
data, we assumed that only a small percentage of farms employed part-time workers - who were assumed
to work at multiple farms - and created a subset of farms in the model within which part-time workers
would mix. As described below, we developed two scenarios to model the movement of part-time workers:
one simulating a day-laborer scenario and one simulating an intermittent worker scenario.

Social visits between growers were assumed to occur at frequencies described by our data. We assumed
that a social visit consisted of a meeting between two growers from different farms at one of their homes,
but our approach could be adapted to other patterns as well.

To note, our model considered exposure risk from vehicular contact with a commercial service vehicle,
part-time worker, or social visitor. The vehicle itself serves as a fomite in our model.

Denote by A the infectious farm and by B another farm of interest. Denote by ∆ a binary variable indi-
cating whether A and B are in the same integrator group. Denote by Ei,n,σ the event that B is exposed
due to Ci with periods of farm and vehicle infectiousness of n and σ days, respectively, and by Fi,k the
event that B is exposed due to Ci on day k. For i = 1, 2, . . . , 11, denote by Si the event that A and B
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are in the same Ci-group, i.e., that A and B are serviced by the same vehicle with respect to cause Ci,
and by Vi,n a binary variable indicating whether A has been serviced relative to cause Ci no later than day
n. Denote by T12,k(C) a binary variable indicating whether farm C takes part in social visits on day k.

We make the following assumptions:

1. For any i and j distinct, Ei,n,σ and Ej,n,σ are independent, i.e., exposure from different causes is
independent.

2. For any i = 1, 2, . . . , 10, ∆ and Ei,n,σ are independent given Si and Vi,n, i.e., if membership in
specific vehicle’s service area as well as index farm service status are known, common integrator
group membership and exposure are independent.

3. For any i = 1, 2, . . . , 10, ∆ and Vi,n are independent given Si, i.e., if membership in specific vehi-
cle’s service area is known, index farm service status and common integrator group membership are
independent.

4. For any i = 11, 12, ∆ and Ei,n,σ are independent, i.e., integrator group membership and exposure
are independent.

5. The variables F12,1, F12,2, . . . are independent random variables, i.e., day-specific exposures are inde-
pendent of each other.

6. For each cause, a service vehicle has equal probability of visiting any of the visitable farms.

• In the case of cyclical causes C1, C2, . . . , C10, visitable farms at a given instant by a given vehicle
are the farms in the service area of this vehicle not having been visited yet.

• For cause C11, visitable farms for a given part-time worker include all farms hiring part-time
workers and not having been visited by this farmer in the same day.

• For cause C12, visitable farms are all those partaking in social visits.

Our goal is to compute the all-cause probability of primary exposure for another farm of interest, given
an assumed period of infectiousness at a single index farm and an assumed duration of viral survival on a
service vehicle or car (vehicle infectiousness) that services the index farm..

The all-cause probability of exposure associated to n days of farm infectiousness and σ days of vehicle
infectiousness, which we denote by Pn,σ(δ), may be computed as

Pn,σ(δ) = P
(
∪12

i=1 Ei,n,σ | ∆ = δ
)

= 1− P
(
∩12

i=1 Ēi,n,σ | ∆ = δ
)

= 1−
12∏

i=1

[
1− P (Ei,n,σ | ∆ = δ)

]
.

However, for i = 1, 2, . . . , 10, we may write that

P (Ei,n,σ | ∆ = δ) = P (Ei,n,σ ∩ Vi,n ∩ Si | ∆ = δ)
= P (Ei,n,σ | Vi,n ∩ Si) P (Vi,n | Si) P (Si | ∆ = δ) ,

while P (E11,n,σ | ∆ = δ) = P (E11,n,σ ∩ S11) = P (E11,n,σ | S11) P (S11) and

P (E12,n,σ | ∆ = δ) = P (E12,n,σ) = 1−
n+σ∏

k=1

[
1− P (F12,k)

]

= 1−
n+σ∏

k=1

[
1− P (F12,k ∩ T12,k(B) ∩ T12,k(A))

]

= 1−
n+σ∏

k=1

[
1− P (F12,k | T12,k(B) ∩ T12,k(A)) P (T12,k(B) | T12,k(A)) P (T12,k(A))

]
.
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As such, we obtain our final expression for Pn,σ(δ) as

1 −
{

10∏

i=1

[
1− P (Ei,n,σ | Vi,n ∩ Si) P (Vi,n | Si) P (Si | ∆ = δ)

]
×

[
1− P (E11,n,σ | S11) P (S11)

]

×
n+σ∏

k=1

[
1− P (F12,k | T12,k(B) ∩ T12,k(A)) P (T12,k(B) | T12,k(A)) P (T12,k(A))

]}
.

Parameter estimation:

Denote by Nin the average number of farms within an integrator group, and by N the total number of
farms in the region considered (i.e., union of all integrator groups).

Consider cause Ci for i = 1, 2, . . . , 10. Denote by Ni the average number of farms visited daily by a
single vehicle in the ith vehicular group, by Mi the average number of farms serviced by any particular
vehicle across the days of its service cycle, and by τi the length of the service cycle associated to the ith

vehicular group. We may estimate the probability P (Ei,n,σ | Vi,n ∩ Si) of exposure given that the index
farm has been visited within n days relative to cause Ci and that the farm of interest is serviced by the
same Ci-vehicle group as the index farm, for general n, by

P̂ (Ei,n,σ | Vi,n ∩ Si) = min
(

σNi

Mi − 1
, 1

)
.

The probability P (Vi,n | Si) that the index farm will be visited in n days relative to cause Ci given that
the index farm and the farm of interest are serviced by the same Ci-vehicle may be estimated by

P̂ (Vi,n | Si) = min
(

n

τi
, 1

)
.

The probability of being serviced by the same Ci-vehicle given whether the potentially exposed farm is in
the same integrator group as the index farm can be estimated by

P̂(Si | ∆ = δ) =
{

(Mi − 1)/(Nin − 1) : δ = 1
0 : δ = 0

,

if service vehicles operate within integrator groups alone. Otherwise, P̂(Si | ∆ = δ) = (Mi − 1)/(N − 1)
is the appropriate estimator.

Next, we consider cause C11. The conditional exposure probability P (E11,n,σ | S11) may be estimated by

P̂ (E11,n,σ | S11) =
µ(M11, n, σ)

M11 − 1
,

where µ(a, b, c) = E[Za(b, c)] and Za(b, c) is a random variable indicating the number of distinct farms
(excluding the index farm) exposed due to part-time workers when a total of a farms are participating in
worker exchanges, and with periods of farm and vehicle infectiousness of b and c days, respectively. Here,
M11 is the average number of farms hiring part-time workers daily.

We consider the following two scenarios:

(A) Among farms hiring part-time workers, the latter are randomly reassigned on a daily basis, with
assignment probability equal for all available farm-worker combinations. Assignments on any two
given days are independent and all farms have exactly one part-time worker per day.

3



(B) Among farms hiring part-time workers, exactly half are visited by a single worker at any given time.
Each worker visits exactly two farms on alternating days, with three full days spent at a given farm in
each week.

Under scenario (A), the distribution (and hence mean) of Za(b, c) may be obtained by the following Monte
Carlo algorithm:

1. Create array of a rows and b + c columns;

2. For i ∈ {1, 2, . . . , b + c}, set column i of the array to be a random reordering of digits (1, 2, . . . , a);
3. For j ∈ {1, 2, . . . , b}, identify the digit stored in row 1 and column j of the array. List the row

numbers at which the latter appears between columns j +1 and j +σ. Set Za(b, c) to be the number
of distinct row numbers obtained upon aggregating the above list for each j;

4. Repeat steps 1-3 many times and use observations to empirically estimate the distribution (and in
particular, the mean) of Za(b, c).

Under scenario (B), calculations simplify greatly. Since the worker involved with the index farm works at
exactly one additional farm (on alternating days), only one farm will be exposed. Thus, in this scenario,
we may write µ̂(a, b, c) = µ(a, b, c) ≡ 1 for a, b, c > 1.

The probability P (S11) may be estimated by P̂ (S11) = (M11 − 1)/(N − 1).

Finally, we consider cause C12. The conditional exposure probability P (F12,k | T12,k(B) ∩ T12,k(A)) can
be shown to be estimated by

P̂ (F12,k | T12,k(B) ∩ T12,k(A)) =
2r12

(r12 + 1)[(r12 + 1)M12 − 1]
,

where r12 and M12 are the average number of visitors per day at a given visitor-receiving farm and the aver-
age number of visitor-receiving farms on a given day, respectively. The probabilities P (T12,k(B) | T12,k(A))
and P (T12,k(A)) may themselves be estimated by

P̂ (T12,k(B) | T12,k(A)) =
(r12 + 1)M12 − 1

N − 1
and P̂ (T12,k(A)) =

(r12 + 1)M12

N
.

Substituting the above estimators in our main question yields the estimator

P̂n,σ(δ) = 1−
{

10∏

i=1

[
1−min

(
σNi

Mi − 1
, 1

)
min

(
n

τi
, 1

)
Mi − 1

Ninνi + N(1− νi)− 1

]1−νi(1−δ)

×
[
1− µ̂(M11, n, σ)

N − 1

]
×

[
1− 2r12M12

N(N − 1)

]n+σ
}

,

where νi is a binary variable indicating whether service vehicles operate only within integrator groups for
the ith vehicular group.
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