
Online supplementary material for “Run-Time

Interoperability between Neuronal Network

Simulators based on the MUSIC Framework”

February 3, 2010

A Network Representation in NEST

The network in NEST is stored as an adjacency list based on a weighted di-
rected graph. Each node in the graph represents either a neuron, or a device
for observing and manipulating neurons. All nodes are derived from the base
class Node, which provides a common interface for the communication with the
simulation kernel. The functions which are relevant for the implementation of
the NEST-MUSIC interface are shown in Table 1.

Each connection is represented by a tuple containing the ids of sender and
receiver, weight, delay and a receptor port. The receptor port is used by the
receiver to differentiate between different incoming connections. In connection
with the MUSIC interface it identifies the channel on a MUSIC output port to
which events are forwarded to.

A detailed description of the network representation and scheduling algo-
rithm of NEST is contained in Plesser et al. (2007).

B Using PyNEST in a distributed scenario

The MPI standard does not mandate that command line arguments are given
to the child processes directly, but allows to “inject” them into the argv array
during the call to MPI Init(). This leads to problems when the child process
does not support MPI directly, like e.g. in the case of Python. To circumvent
these problems, we can use a small launcher script instead of using Python. A
launcher script to run the PyNEST script simulation.py is shown in the following
listing:

#!/ bin / bash
exec python simulation . py

1

Function Parameters Description
get status() Dictionary The supplied dictionary is filled with the

internal parameters of the node and re-
turned to the caller.

set status() Dictionary The parameters from the supplied dictio-
nary are set as internal parameters for
the node.

calibrate() Called by the Scheduler before the sim-
ulation starts. Used to re-calculate in-
ternal parameters based on those of the
simulation kernel.

connect sender() EventT
integer

Called on the receiver when a connec-
tion for events of type EventT is to be
established. To support a specific type of
event, a node has to overload this func-
tion for the respective type. The integer
argument is used to select the receptor
type on the receiver side.

handle() EventT Called by the scheduler to deliver events
of type EventT to the node.

Table 1: Interface functions of class nest::Node that are used by the NEST-
MUSIC interface. EventT denotes one of NEST’s built-in event types.

C A complete example with NEST

To illustrate the interplay of NEST and MUSIC, we now walk through an exam-
ple, in which a MUSIC eventgenerator creates a random spike train that is fed
to NEST. The incoming spikes are recorded by a spike detector in NEST and
forwarded to a MUSIC output port, which is connected to a MUSIC eventlogger.

The following listings show the PyNEST script (events in out.py) to set
up the simulation: First, we import the PyNEST module and tell NEST that
it should overwrite data files.

from nest import ∗
SetKernelStatus ({ ” ove rwr i t e f i l e s ” : True })

Second, we create a music in proxy and set the port and channel it listens
to to spikes in and 0, respectively.

mip = Create (”music in proxy”)
SetStatus (mip , {” port name” : ” s p i k e s in ” ,

”music channel ” : 0})

Third, we set the acceptable latency of the MUSIC port spikes in to 1.0
miliseconds.

SetAcceptableLatency (” s p i k e s in ” , 1 . 0)

2

Fourth, we create a spike detector device and set its status, so that the spikes
it detects are not stored in memory, but printed to the screen directly.

sd = Create (” sp ike de t e c t o r ”)
SetStatus (sd , {” to memory” : False , ” to s c r e en ” : True })

Fifth, we create a music out proxy, mop, which listens to the MUSIC port
named spikes out

mop = Create (”music out proxy”)
SetStatus (mop , {” port name” : ” s p i k e s out ” })

Sixth, we connect the MUSIC input proxy mip to the spike detector sd and
to channel 0 of the MUSIC output proxy mop.

Connect (mip , sd)
Connect (mip , mop , {”music channel ” : 0})

Finally, we simulate the network for 10.0 miliseconds.

Simulate (1 0 . 0)

To be able to use PyNEST with MUSIC in a distributed way, we use a small
launcher script called nestlauncher.sh. The content of the script is shown in
the following listing:

#!/ bin / bash
exec python events in out . py

The MUSIC configuration file events in out.music is shown in the following
listing: We first define the stoptime of the simulation:

stoptime=0.01

The first application is an eventgenerator, which comes with the MUSIC
library.

[generator]
binary=eventgenerator

np=1
args=−−timestep 0 .001 −−frequency 500 .0 1

The second application runs our simulation in NEST using the small helper
script nestlauncher.sh. We connect the port out of the generator with the
port spikes in of NEST.

[nest]
binary=nestlauncher . sh
np=1
generator . out −> nest . spikes in [1]

The third application is an eventlogger, which is also part of MUSIC and
just prints the events it receives to the screen. We connect the port spikes out

of NEST with the logger.

3

[logger]
binary=eventlogger

np=1
args=−−timestep 0 .001
nest . spikes out −> logger . in [1]

Finally, the multi-simulation is run by calling mpirun −np 3 music events

in out.music. The output in the listing below shows that both NEST’s spikedetector
(upper block, time in miliseconds) and the MUSIC eventlogger (lower block,
time in seconds) see the spikes at the same time:

1 3.534

1 4.11

1 8.789

1 9.066

Rank 0: Event (0, 0.003534) detected at 0

Rank 0: Event (0, 0.00411) detected at 0

Rank 0: Event (0, 0.008789) detected at 0

Rank 0: Event (0, 0.009066) detected at 0

D Sequence diagrams for NEST

See Figures 1 and 2.

E A complete example with MOOSE

Connecting a MOOSE model with MUSIC is straightforward. We will here
walk through a sample MOOSE script where a model is set up to receive action
potentials from MUSIC. See Appendix F for sequence diagrams that explain
how MOOSE and MUSIC objects interact.

In this example, note that MOOSE arranges objects in a tree structure re-
sembling the Unix filesystem. In this scheme, the string /parentObj/childObj
acts as an identifier for an object named childObj which is contained in an
object named parentObj, which in turn is situated in the top-level container
object simply called / (or the root object).

First, a MUSIC port is declared. This is done by calling the addPort function
on the /music singleton object. The arguments passed to this function are:

Argument Value
Direction ”in”
Port type ”event”
Port name ”myPort”

This command creates an instance of the InputEventPort class. The name
of the corresponding MUSIC port is ”myPort”. If we were interested in sending

4

Figure 1: Sequence diagram showing the events from setup phase to run-
time phase of a network containing a music out proxy. (A) On startup,
NEST creates a MUSIC setup object. (B) The proxy is created by the com-
mand mop = Create(”music out proxy”). (C) The portname of the proxy
is set using SetStatus(mop, ”portname”: ”spikes out”). (D) A neuron is
created by calling iaf = Create(”iaf neuron”). (E) The neuron is con-
nected to the MUSIC output channel 2 of the port the proxy represents using
Connect(n, mop, ”receptor type”: 2). (F) The proxy stores the connection in
its indexmap, which contains the indices of all local channels of the port. (G)
Calling Simulate() first calls calibrate() on the proxy, where it registers itself
with MUSIC using the indexmap, built previously. (H) NEST then enters the
MUSIC runtime phase by calling enter runtime() on the setup object, which
returns a runtime object and destroys itself thereafter.

5

Figure 2: Sequence diagram showing the events from setup phase to run-
time phase of a network containing a music out proxy. (A) On startup,
NEST creates a MUSIC setup object. (B) The proxy is created by the
command mip = Create(”music in proxy”). (C) The portname and and
the channel of the proxy are set using SetStatus(mip, ”portname”: ”spikes
in”, ”channel”: 3). (D) A neuron is created by calling iaf = Create(”iaf
neuron”). (E) The proxy is connected to the neuron using Connect(mip, n).
(F) Calling Simulate() first calls calibrate() on the proxy, where it registers
itself with NEST kernel using the function register music in proxy() with the
portname, the channel, and itself as arguments. (G) the NEST kernel stores the
new MusicEventHandler in its music in portmap under the name spikes in.
(H) The MusicEventHandler registers mip as the proxy for channel 3. (I) The
function publish ports() creates and maps a MUSIC output port object for
the ports that are known to NEST. (J) NEST then enters the MUSIC runtime
phase by calling enter runtime() on the setup object, which returns a runtime
object and destroys itself thereafter.

6

spike-time information to MUSIC, we would simply set the Direction argument
to ”out”.

call / music addPort ” in ” ” event ” ”myPort”

Next, the rate of calling the MUSIC tick() function is specified. This is done
by creating a ”clock” which will request the /music object to do its calculations
at regular intervals. Here, clock #4 will invoke /music’s calculations every 1e-3
seconds of simulation time.

setclock 4 1e−3
useclock / music 4

When the input port, ”myPort”, was declared above, a few new objects were
created automatically:

• /music/myPort

• /music/myPort/channel[0], . . . , [width − 1]

Here the width of ”myPort” was used to create an array of channels: channel[0]
. . . channel[width − 1]. The width was requested from the MUSIC API. Each
of the objects in the channel[\#] array is an instance of the InputEventChannel
class, which emits spike-times as received from MUSIC.

It is now simple to send spike-times to synapses in the model. Here the
1st event-generating channel in ”myPort” is connected to the ” AMPA” synaptic
channel situated in ”myCompartment”.

addmsg \
/ music / myPort / channel [0] / event \
/ myCompartment / AMPA / synapse

Finally, the simulation is run for 1.0 seconds (of simulation time).

reset

step 1 .0 −time

Here, the reset command will invoke the initialization routines in the Music,
OutputEventPort and InputEventPort instances. This involves setting up the
MUSIC Runtime object, and mapping local indices to global indices. The step
command starts the main simulation loop, which invokes the calculation routine
of the Music instance, which in turn calls MUSIC’s tick() function.

F Sequence diagrams for MOOSE

See Figures 3 and 4.

7

new()

music

new()

spike

(B)

(C)

new()

reinit()

delete()

(E)

respondToAdd()

(F) reinit()

MOOSE

MUSIC::Setup

MOOSE::Music

add(oec[0])

map(indexmap)

publishEventOutput("myPort")

new()

MP

runtime

MOOSE::

SpikeGen

true

true

MUSIC::Port

(A)

setup

(G)

MOOSE::Output-

EventChannel

MOOSE::OutputEventPort

MUSIC::Runtime

MP

addPort()
new()

oep

width()

width

initialize(MP, width)

new[](width)

oec[]

new()

runtime

tick()

(D)

Figure 3:
Sequence diagram showing the events of the setup and runtime phases of a
network containing a MOOSE::OutputEventPort. (A) On startup, MOOSE
creates a MUSIC setup object. (B) An instance of MOOSE::Music is created
automatically at the location /music. (C) An output event port is represented
in MOOSE by the command call /music addPort ”out” ”event” ”myPort”.
This involves creating an instance of OutputEventPort, publishing the port
in MUSIC, finding out its width, and creating a corresponding number of
MOOSE::OutputEventChannel instances. (D) A SpikeGen object is created by
calling create SpikeGen /myCompartment/spike. (E) This spike-generating
object is then connected to the MUSIC output channel 0 of the port using
addmsg /myCompartment/spike/event /music/myPort/channel[0]/synapse.
(F) The user calls reset, which invokes initialization routines on all MOOSE
objects. Instances of MOOSE::OutputEventPort map global indices to local
indices through a MUSIC API call. The MUSIC runtime phase begins as the
MOOSE::Music object requests for the MUSIC runtime object, which also leads
to the MUSIC setup object being destroyed. (G) The MOOSE step call leads
to MUSIC tick() being called at regular intervals.

8

new()

music

new()

AMPA

(B)

(C)

new()

reinit()

delete()

(E)

respondToAdd()

(F) reinit()

MOOSE

MUSIC::Setup

MOOSE::Music

add(iec[0])

map(indexmap,this)

publishEventInput("myPort")

new()

MP

runtime

MOOSE::

SynChan

true

true

MUSIC::Port

(A)

setup

(G)

MOOSE::Input-

EventChannel

MOOSE::InputEventPort

MUSIC::Runtime

MP

addPort()
new()

iep

width()

width

initialize(MP, width)

new[](width)

iec[]

new()

runtime

tick()

(D)

Figure 4:
Sequence diagram showing the events of the setup and runtime phases of
a network containing a MOOSE::InputEventPort. (A) On startup, MOOSE
creates a MUSIC setup object. (B) An instance of MOOSE::Music is created
automatically at the location /music. (C) An input event port is represented
in MOOSE by the command call /music addPort ”in” ”event” ”myPort”.
This involves creating an instance of InputEventPort, publishing the port
in MUSIC, finding out its width, and creating a corresponding number of
MOOSE::InputEventChannel instances. (D) A SynChan object is created by
calling create SynChan /myCompartment/AMPA. (E) This synaptic channel
object is then connected to the MUSIC input channel 0 of the port using
addmsg /music/myPort/channel[0]/event /myCompartment/AMPA/synapse.
(F) The user calls reset, which invokes initialization routines on all MOOSE
objects. Instances of MOOSE::InputEventPort map global indices to local
indices through a MUSIC API call. Note that no MUSIC EventHandler object
needs to be created since MOOSE::InputEventPort derives from the MUSIC
EventHandler class. The MUSIC runtime phase begins as the MOOSE::Music
object requests for the MUSIC runtime object, which also leads to the MUSIC
setup object being destroyed. (G) The MOOSE step call leads to MUSIC
tick() being called at regular intervals.

9

References

H. E. Plesser, J. M. Eppler, A. Morrison, M. Diesmann, and M.-O. Gewaltig.
Efficient parallel simulation of large-scale neuronal networks on clusters of
multiprocessor computers. In A.-M. Kermarrec, L. Bougé, and T. Priol, ed-
itors, Euro-Par 2007: Parallel Processing, volume 4641 of Lecture Notes in
Computer Science, pages 672–681, Berlin, 2007. Springer-Verlag.

10

