Molecular Cell, Volume 27

Supplemental Data

Active and Repressive Chromatin Is Interspersed

without Spreading in an Imprinted Gene Cluster

in the Mammalian Genome

Kakkad Regha, Mathew A. Sloane, Ru Huang, Florian M. Pauler, Katarzyna E. Warczok, Balázs Melikant, Martin Radolf, Joost H. A. Martens, Gunnar Schotta, Thomas Jenuwein, and Denise P. Barlow

Figure S1. Lack Of *Au76*-psg Expression And DNA Methylation Status Of Genes In The *Igf2r* Cluster

(A) RT-PCR showing that the signal observed for the *Au76*-psg on both parental chromosomes in Fig.1B arises from cross-hybridization of the expressed ancestor *Rangap1*

gene located on chr.15. Sequence specific primers identify a 416bp band from the expressed *Rangap1* chr.15 gene sequence in all cell types and a 480bp band specific to *Au76* in MEFF cells carrying only the paternal chromosome. This latter signal arises from *Au76* sequences contained within the *Air* ncRNA as it is absent in $T^{hp}/R2\Delta$ cells that carry a paternal deletion of the *Air* promoter and lack *Air* expression (Wutz et al., 2001). (-), negative RT-PCR controls.

(B) DNA blots showing DNA methylation of promoter and pseudogene regions. Genomic DNA was digested either with a non-methyl sensitive plus a methyl sensitive enzyme (+ lanes, NotI, MluI, HhaI, HpaII) or with a single non-methyl sensitive enzyme (- lanes). The detection of the same sized band in (+) and (-) lanes indicates methylation. The Igf2r CpG island promoter (probe AJ249895 94104-99431) is methylated in MEFF cells that only contain a paternal chromosome, unmethylated in MEFB1 that only contain a maternal chromosome. Diploid adult and embryonic tissues contain both parental chromosomes and show a cut unmethylated and uncut methylated Igf2r fragment. The Air CpG island promoter (probe AJ249895 124992-126086) shows maternal-specific methylation at all stages. The *Slc22a3* CpG island promoter (probe UCSC Mouse Feb 2006 Chr.17: 12347702-12348110) is unmethylated (also at BssHII, data not shown). The Slc22a2 promoter (probe UCSC Mouse Feb 2006 Chr.17: 12429198-12429606) lacks a CpG island and is partially methylated on both parental chromosomes. MEFF cells showed less methylation than MEFB1 cells (*faint band on original image). However, this is likely to be a cell variation as $T^{hp}/+$ and $+/T^{hp}$ embryonic tissues lack parental-specific methylation (Zwart et al., 2001). The Au76 fragment (probe AJ249895 bp43732-44140) is a CG poor region and is methylated on both parental chromosomes. Complete digestion by methyl-sensitive enzymes was confirmed by rehybridization of blots with the Htf9 CpG island (Accession number X05830) that lacks DNA methylation (data not shown).

Figure S2. H3 And H4 Acetylation On The Expressed And Silent *Igf2r* And *Air* Promoters

(A) 40kb sequence based map showing the expression pattern of *Igf2r* and *Air* on the maternal chromosome (light grey line). Details as in Fig.2A.

(**B-D**) ChIP-PCR from MEFB1 cells that have only the maternal allele of the Igf2r cluster using multi-acetylation antibodies against H3 (K9+K14) acetylation (panels H3Ac) and H4 (K5+K8+K12+K16) acetylation (panels H4Ac).

(E) 40kb sequence based map showing the expression pattern of Igf2r and Air on the paternal chromosome (dark grey line).

(**F-H**) ChIP-PCR from MEFF cells that have only the paternal allele of the Igf2r cluster using multi-acetylation antibodies against H3 (K9+K14) acetylation (panels H3Ac) and H4 (K5+K8+K12+K16) acetylation (panels H4Ac).

Figure S3. Mono And Di-Methyl Modifications Of H3K9, H3K27 And H4K20

(A) 40kb sequence based map showing the expression pattern of *Igf2r* and *Air* on the maternal chromosome (light grey line).

(**B-H**) ChIP-PCR from MEFB1 cells that have only the maternal allele of the *Igf2r* cluster using antibodies against H3K9me1, H3K9me2, H4K20me2 and H3K27me2. Primers 20-22 showed reproducible faint H3K27me2 signals.

(I) 40kb sequence based map showing the expression pattern of Igf2r and Air on the paternal chromosome (dark grey line).

(J-P) ChIP-PCR from MEFF cells having the paternal allele of the *Igf2r* cluster using antibodies against H3K9me1, H3K9me2, H4K20me2 and H3K27me2. A few primers variably produced weak H3K27me2 signals. *faint inconsistent signals.

Figure S4. ChIP-Chip Assay Of Histone Marks On The Maternal Igf2r Imprinted Cluster

Biological replica of data in Fig.3 showing that active and repressive marks are interspersed and show limited spreading in the maternal Igf2r imprinted cluster. Details as Fig.3.

ChIP-DNA analyzed by PCR in Sup.Fig.2 was assayed by ChIP-Chip with a custom PCR tiling array as described in Fig.3. Mat; maternal chromosome analyzed in MEFB1 cells, Pat; paternal chromosome analyzed in MEFF cells.

Figure S6. ChIP-Chip Assay Of Histone Marks On The Paternal Igf2r Imprinted Cluster

Biological replica of data in Fig.4 showing that active and repressive marks are interspersed and show limited spreading in the paternal *Igf2r* imprinted cluster. Details as Fig.4.

(A) ChIP-PCR of H3K9me3, G9a and H3K9me2 modifications on the *Au76*-psg in MEFB1 (maternal chromosome) and MEFF (paternal chromosome) cells. H3K9me3 is also seen as a broad peak over the *Au76*-psg in the ChIP-Chip experiment only on the paternal chromosome (Fig.4) but H3K9me2 and G9a are not present on the paternal chromosome.

(**B**) ChIP-PCR of H3K9me3 in undifferentiated CCE ES cells and in differentiated CCE ES cells (treated in the absence of LIF with 5μ M/ml Retinoic Acid for 5 days) shows that the H3K9me3 peak is not a germ line mark, but is acquired in ES cells during differentiation.

(C) An enlargement of a 60kb region from Fig.4 showing the relationship between the HCpeak on the Au76-psg (NCBI accession number AJ249895) and the interspersed repeat distribution. Primer pairs (N° 49-61) used for ChIP-PCR are indicated below. Details as Fig.3. Note that repeats were not included in the custom PCR tiling array and that Au76-psg primers do not amplify the host *Rangap1* gene on chr.15 (Sup.Fig.1).

Figure S8. HP1 Isoforms On The Silent Air And Igf2r Promoters And The Au76-psg

ChIP-PCR analysis of the (**A**) *Air* promoter, (**B**) *Igf2r* promoter and (**C**) *Au76*-psg in MEFB1 cells containing only the maternal *Igf2r* cluster (left panels) and MEFF cells containing only the paternal *Igf2r* cluster (right panels), using antibodies for HP1 α , HP1 β and HP1 γ . *faint reproducible signals.

Figure S9. H3K9me3 Stability In Cells Lacking SUV4-20H Histone Tri-methylases

ChIP-PCR analysis of (**A**) *Air* promoter, (**B**) *Au76*-psg and (**C**) pericentric DNA in wildtype and mutant MEFs lacking SUV4-20H1,H2 (SUV4-20H dn) (Schotta et al., 2004) using antibodies for H3K9me3 and H4K20me3. Note that H4K20me3 is mostly lost from the *Au76*psg in SUV4-20H null cells while it is reduced but still present at the silent *Air* promoter. In both cases the reduction in H4K20me3 does not change the H3K9me3 signal. Quantitative PCR showed that *Air* and *Igf2r* expression levels were similar in wildtype and mutant cells (data not shown). Lane numbers in (**A**), (**B**) indicate primer pairs. Lane numbers in (**C**): 1;Input, 2;Mock, 3;H4K20me3, 4;H3K9me3, 5;HP1 β show that pericentric DNA loses H4K20me3 in SUV4-20H null cells as reported (Schotta et al., 2004).

Figure S10. The Imprinted *Gtl2* ncRNA Is Marked Upstream By Focal Heterochromatin Peaks

ChIP-Chip showing the H3K9me3 profile over a 48kb region of mouse chromosome 12 (104,997,000-105,045,000) containing the imprinted Gtl2 ncRNA indicated underneath. Preparation of the tiling array and hybridization were undertaken by Agilent Technologies, Inc. Two approximately 5kb long heterochromatin peaks can be seen, one is on the upstream DMR (known as the IG-DMR (Lin et al., 2003)), the other lies between this and the Gtl2transcription start. MEFB1 and MEFF cells are diploid for mouse chromosome 12 and provide biological replicates for this experiment. DMRs; regions showing parental-specific DNA methylation, Repeats; identified RepeatMasker total repeats by (www.repeatmasker.org).

Figure S11. ChIP-Chip Control DNA Sequences

Controls for active (**A**) H3K4me3, (**B**) H3K4me2 (**C**) H3K9Ac and repressive (**D**) H3K9me3, (**E**) H4K20me3, histone modifications from the custom PCR genome tiling array. Each graph shows controls from one biological replica using data obtained from ChIP-Chip. The columns and error bars show, respectively, the average ChIP/Input ratio and standard deviation of the eight replicate spots on the array. This data shows that the antibodies used can distinguish active genes (beta actin) from silent genes (alpha crystallin) and heterochromatin (major satellites). This data also show that the MEFB1 and MEFF cells used here to identify parental-specific modifications, are similarly modified on beta actin, alpha crystallin and the major satellites. Data for the *Igf2r/Air* promoters is shown for comparison. Columns represent the average ChIP/Input ratio of eight spots. Black columns; MEFB1, Grey columns; MEFF.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	O-PCR assay	Air-132	Air-128	Air-UPSTREAM	Air-START	Air-126	Air-125
Position relative to primer pairs in Fig.2.3 Accession <i>V</i> .AI240895 132542- 132627 123612- 122642 12300- 12200-127079 126217-126243 126212-126278 125224- 125224-125297 Primer sequence F: GAACTGCC AGTGACAA GTGGAAAT GCGAGTACAC GCACACTGCT F: R: CACAGAGGTCA AGTGACAA GTGAGGTT F: R: CACAGAGGTCA AGGGAACCT GCACACAGCT F: CTGAGGACT AGGGACAAT GCAGAAGCT AGGGAACAC GCAGAACCT F: R: CCAGAAGACT AGGGAACAT ACC F: CTCAGCAGGCA AGGGAACAT ACC F: CCCAGGAGCA AGGGAACT ACC F: R: R: ACC F: CCCAGGAGCA AGGGAACT ACC F: CCCAGACAAT CCCAGGAGCA AGG F: CCCAGCAAGA AGG F: CCCAGCAAGA AGG F: CCCAGCAACA AGG F: CCCAGCACAAT CCCAGGAGCA AGG F: CCCAGAACA TTCACCT F: CCCAGAACA AGG F: CCCAGAACA TTCACCT F: CCCAGAACAT ACC F: CCCAGACAAC AGG F: CCCAGACAAC AGG F: CCCAGAACA TTCACCAT AGG F: CCCAGACAAC AGG F: CCCAGACAAC AGG F: CCCAGAACA TTCACCAT AGA F: CCCAGACAAC AGG F: CCCAGACAAC AGG F: CCCAGACAAC AGG F: CCCAGACAAC AGG F: CCCAGACAAC AGG F: CCCAGACAAC AGG F: CCCAGACAAC AGG F: CCCAGACAAC AGG F: CCCAGCACAC AGG F: CCCAGACAAC AGG F: CCCAGACAAC AGG F: CCGCACAAC AGG F: CCGCCGCC AGCACAAC AGG F: CCGCACACAC AGG F: CCGCACACAC AGG F: CCGCACACAC AGG F: CCGCACACAC AGG F: CCGCACACAC AGG F: CCCCAGACAC AGG<	Q-1 Cit assuy	TM assav	TM assav	SG assay	SG assay	TM assav	TM assav
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Position relative to primer	132542-	128561-	127006-127079	126177-126243	126212-126278	125224-125297
Accession Nr.A1249895Primer-pair 1Primer-pair 4Primer spins 5 & 6Filler pairs 5 & 6Primer sequenceF: GAACTGCC AGTGACAA GTGGACAT GTGGACAT GGACGTGCT R: CAGAGGTT R: CAGAGGTT R: CAGAGGTT CAGAGGTT CAGAGGTT CAGAGGTT CAGAGGTT CAGAGGTT CAGAGGTT CAGAGGTT CAGAGGTT CAGAGGTT CAGAGGTT CAGAGGTA CAGAGGTA CAGAGGTA CAGAGGTA CAGAGGTA CAGAGAGAGT TTATAACC CGGAGAAGT TTATAACC CGGAGCAAGGTA CCAGGCAGAGT TTATAACC CGGAGGAAGT CCAGGGTACA CGGTTACA GGGTTACA GGATACA CGAAC CGAAG CGAAC CTATTGCAF: CGAGGAGGAGT CAGAGGTA CCACGAGA CGAGGAAGT CCACGAGGTA CCACGAGGA CCACGAGG CCACGAGG CCACGAGGA CCACGAGGTA CCACGAGG CCACGAGCA CCACGAGG CCACGAGG CCACGAGGTA CCACGAGGA CCACGAGGA CCACGAGG CCACGAGGA CCACGAGGAGGAGGAGGAGGAGGAGGAGGA CCACGAAC CCACGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAG	pairs in Fig 2.3	132627	128642	Between primer-	Primer-nair 6a*	Primer-nair 6h*	Primer-nair 7
Primer sequenceF: GACTGCC GGACTGCA GTGGTAAT R: GCACTGTT R: GCACGAGT R: GCACGAGT TTATACC R: GCACGAGT TTATACC R: GCACGAGT TTATACC GGCACGAGT TTATACC TTATACC R: CAGAAGCT GGCACGAGT TTATACC TTATACC CAGAAGCT GGCACGAGT TTATACC TTATACC CAGAAGCT TTATACC CAGAAGCT TTATACC CGAGAGCT TTATACC CGAGAGCT TTATACC CGAGAGCT TTATACC CGAGAGCT TTATACC CGAGAGCT TTATACC CGAGAGCT TTATACC CGAGAGCT TTATACC CGAGAGCT TTATACC CGAGAGCT TTATACC CGAGAGCT CGAGAGCT CGAGAGCT CGAGAGCT CGAGAGCT CGAGAGCA CGAGACAC CCCCGAGC CGGAGCAAT TCCAGCGTT CCCGGAGCA CCCCGAGCA CCACGAGCA CCACCAAC CCAGAGGAA CCACCAAC CCACGAGCA CCACCAAC CCACGAGCA CCACCAAC CCACGAGCA CCACCAAC CCACGAGCA CCACCAAC CCACCAAC CCACGAGCA CCACCAAC CCACCAAC CCACCAAC CCACGAGCA CCACCAAC CCACCAAC CCACCAAC CCACCAAC CCACCAAC CCACCAAC CCACCAAC CCACCAAC CCACCAAC CCACCAAC CCACCAAC CCACCAAC CCACCAAC CCACCAAC CCACCAAC CCACCAAC CCACCAAC CCACCACAC CCACCACAC CCACCAAC CCACCAAC CCACCAAC CCACCAAC CCACCAAC CCACCAAC CCACCAAC CCACCAAC CCACCAAC CCACCAAC CCACCAAC CCACCACAC 	Accession Nr: AJ249895	Primer-pair 1	Primer-pair 4	pairs 5 & 6	Timer pui ou	Timer puir ob	rinner puir /
IntervaluationGAACTGCC AGTGACAA GTGGAAAT R: CCAGGACATTR GCACTGTT R: CCAGAGAT GCACAGTT R: GCACTGTT GCACGAGT GCACAGT TATAACC CCAGAGCT GCACTGTT TATAACC CCAGAGCT GGCAGAGT AACACAGAGGTCA CCAGAGCT R: ACC AGATAACCTGT TGT R: R: CCAGGAGAAGA GGGAGCAAGA GGGAGCAAGGA GGGAGCAAGGA GGGAGCAAGGA GGGAGCAAGGA GGGAGCAAGGA GGGAGCAAGGA GGGAGCAAGGA GGGAGCAAGGA GGGAGCAAGGA GGGATCATTGCA CCAGGAGCT AGAGGAGAGA TTCAACATTGCA CCAGGAGCA GGGACAAGGA CCACGAGA CCACGAGAG CCACGAGA CCACGAGAG TTAATTGNo probe CCAGGACAAG CCACGAGA CCACGAGA CCACGAGAG CCACGAGAG AGGGATCACTCCCCCTT CCTCAGCGGC CCAGCACAAG CCACGAGA CCACGAGA CCACGAGA CCACGAGA CCACGAGATACCCCAGAG CCACGAGAC CCACGAGAG CCACGAGAT CCACGAGAT CCACGAGAT CCACGAGAG CCACGAGAT CCACGAGA CCACGAGAT CCACGAGAT CCACGAGAT CCACGAGAT CCACGAGAT CCACGAGAT CCACGAGAT CCACGACACAC CCACGAGAT CCACGAGAT CCACGAGAT CCACGAGAT CCACGAGAT CCACGAGAT CCACGAGAT CCACGAGAT CCACGAGAT CCACGAGAT CCACGAGAT CCACGAGAT CCACGAGAT CCACGAGAT CCACGAGAT CCACGAGAT CCACGAGAT CCACGAGA CCACGAGAT CCACGAGAT CCACGAGAT CCACGAGAT CCACGAGAT CCACGAGAT CCACGAGAT CCACGAGAT CCACGAGAT CCACGAGAT CCACGAGAT CCACGAGAT CCACGAGAT CCACGAGAT CCACGAGAT CCACGAGAT CCACGAGAT CCACGAGAT <b< td=""><td>Primer sequence</td><td>F:</td><td>F:</td><td>F:</td><td>F:</td><td>F:</td><td>F:</td></b<>	Primer sequence	F:	F:	F:	F:	F:	F:
AGTGACAA GTGGTAAT R: CAGAGTT TATAACCCTGTGGAAT GTGAGGTT R: CAGAAGCTCCAGGCTATA ACC AAGGAGAGAG TTCAACCTGT TCCATCCCCAGGA TCCAACCGT R: CCAGCAAGAC CCATACCGG TTCAACCTGT TCCAACCTT TATAACCCCTTCCCTT C R: CCAGCAACAC CGAGCAAGA CGTTT TCCAC AAGGAGAGAG AGATAACCTGT TCCACCTTCCCCGC R: CCAGCAACAC CCAGCAACC AGGATACCCGTCCTTCCCCGC R: CCGGACCAAT CCGGTCC CCGGACCAAC CCGGTCAC AGGACAACC CCAGCAACC CCGGTCAC CCGGTCAC CCGGTTACA GCGTTACA GCGAAC CCACCGCG TT CCCCCGCT AGACCAACC CCGCCCAACC CAGCAACACC CAGCACC CAGCAACC CAGCACC CAGCAACC CAGCACC CA	1	GAACTGCC	GTTTGTTT	ACAGAGGTCA	TTACCTCAGT	GGCGGTGCT	CTGAGCTTTC
GTGGTAAT R: GCACTGTT GCAGAAGT TATAACCGTGAGGTT R: CAGAAGCT GCACTGTT GCAGAAGT AAGGGAAGCT GCACTAGA CGTTTT CAGAGGTA CGATTTCCA GGCTTACA CGGTTT CCAGTTT CCAGTTT CCAGAGGTA CGGGTTACA GGGTTACA GGGTTACA GGACACACC R: CCAGAGGTA CCATTTGCA CCACGAGGT CCACGAGGA CCACGAAC CCAC		AGTGACAA	CTGTGGAT	CCAGGCTATTA	TCCCCAGGA	GTGCTTCTT	CCTTCCCTTT
R: GCACTGTT GCAGAAGT TTATAACC AAR: CAGAAGT GCACTGTT GCAGAAGT GCTTTAAACC AAR: CAGAAGCT AGAGCAACT TTCCATGCCGAGGC TCAACATT GCACACT TTCCAR: CCGAGAGT CCACACT TCCACCTG TCCACCTG AGR: CCTCAGCGG AGTGCAGGTC TTCAACATT AGR: CCGAGCAAT TCCAGTT TCCGGTTGT CCGGTGTR: CGGAGCAAT TCCGGTTGT TCCGGTTGTR: CGGACACT CCGACACCR: CCTCACCGAAG AGR: CCTCACCGT CCGCACACCR: CCGAGCAAT TCCGGTTGT TCCGGTTGTR: CCGACACCR: CCTCACCGCAAG AGR: CCGCACACCR: CCGCACACCR: CCGAGCAAT TCCGGTTGT TCCGGTTGTR: CCGACACCR: CCGCACACC CAGCACACCR: CCGAGCAAT TCCGGTTGT TCCGGTTGTR: CCGACACCR: CCGACACCR: CCGACACCR: CCGCACACC CAGCACACCR: CCGACACCR: CCGACACCR: CCGACACCT TCCGGTTGT TCCGGTTGTR: CCGACACCR: CCGACACCR: CCGACACCR: CCGACACCR: CCGACACCR: CCGACACCR: CCGACACCR: CCGACACCR: CCGACACCR: CCGACACCR: CCGACCACCR: CCGACACCR: CCGACACCR: CCGACACCR: CCGACCACCR: CCGACACCR: CCGACACCR: CCGACCACCR: CCGACCCCR: CCGACCACCR: CCGACACCR: CCGACACCR: CCGACACCR: CCGACACCR: CCGACACCR: CCGACACCR: CCGACACCR: CCGCACACCR: CCGACACCR: CCGACACCR: CCGACACCR: CCGACACCR: CCGCACACCR: CCGCACACCR: CCGCACACCR: CCGCACACCR: CCGCACACC <td></td> <td>GTGGTAAT</td> <td>GTGAGGTT</td> <td>ACC</td> <td>TGT</td> <td>R:</td> <td>С</td>		GTGGTAAT	GTGAGGTT	ACC	TGT	R :	С
GCACTGTT GCAGAAGT TTATAACC AACAGAAGCT GGCTAGA GGCTAGA CTTTAACC AACAGGGAGAGT AGATAACCTGT TCCA GG CGAGCAAGA GGCTCAGCAC AGGAAC CATTTGCA CCAGGAGT CCAGGAGA CCAGGAGA CCAGGAGAAC TTNo probe (SG Assay)CTGCCCCGCT AGACCAAG AGGAACCACGGCAAC CCACGAGA CAGGAGTAC CCAGGAGA CCAGGAGA CCAGGAGA TTNo probe (SG Assay)CTGCCCCGCT AGACCAAG AGGGATCACGGCAAC CAGCACAC CAGGACAC CAGGACAC CAGGACAC TTACCGCAACAC CAGGAGAGT CCACGAGA CAGGATCCACGCAACAC CAGGACAC CAGGATCCACGCAACAC CAGGACAC CAGGATCCACGCAACAC CAGGATCCACGCAACAC CAGGATCCACGCAACAC CAGGATCCACGCAACAC CAGGATCCACGCAACAC CAGGATCCACGCAACAC CAGGATCCACGCAACAC CAGGATCCACGCAACAC CAGGATCCACGCAACAC CAGGATCCACGCAACAC CAGGATCCACGCAACC CAGGATCCACGCAACAC CAGGATCCACGCAACAC CAGGATCCACGCAAC CAGGATCACGCAAC CAGGATCACGCAAC CAGGATCACGCAAC CAGGATCACGCAAC CAGGATCACGACAC CAGGATCACGACAC CAGGATCACGACAC CAGGATCACGCAAC CAGGATCACGACAC CAGGATCACGACAC CAGGAT		R:	R:	R:	R:	TGCCGAGGC	R :
GCAGAAGT TATAACC AAGGCCTAGA CGTTTTAGATAACCTGT TICCAGCAGCAAGA AGATATCTCCGGTTGTTaqman probe (TM assay)TCAGGTTT CCAGTGCA GGGTTACA GCAAC GCAAC GCAAC TTAATTGCATTGCA CCACGAGA CCACGAGAGA TTTAATTGNo probe (SG Assay)No probe (SG Assay)CTGCCCGCT AGAGCAAGG AGGCAAGG AGGCAAGG AGGCAAGG AGGCAAGG AGGCAAGC AGGGATC CAAGGATCNo probe (SG Assay)CTGCCCGCT AGAGCAAGG AGGCAAGG AGGCATC CCACGAAGA CAAGGATCACCGCACAC CCACGAGAGA CAAGGATCACCGCACAC CAGCACACC CAGGCACAC CAAGGATCACCGCACAC CAGGCACAC CAGGATCACCGCACAC CAGGATC CAGGATCACCGCACAC CAGGATC CAGGATCACCGCACAC CAGGATC CAGGATCACCGCACAC CAGGATC CAGGATCACCGCACAC CAGGATC CAGGATCACCGCACAC CAGGATCACCGCACAC CAGGATCH3K4me31) 0.015311) 0.026861) 0.006301) 0.015021) 0.02083ND2) ChIP/Input MEFF2) 0.082092) 0.022772) 0.071392) 12.271142) 4.87977I3) Enrichment Expressed" / Silent ⁸¹ 3) 5.35891 3) 0.84747 3) 11.32509 3) 816.83850 3) 23.418800 I) 0.040491) ChIP/Input MEFFND1) 0.476281) 0.135931) 0.022851) 0.059751) 0.040492) ChIP/Input MEFF2) 1.425502) 7.405902) 2.499852) 3.566072) 13.393503) Enrichment Expressed ^F / Silent ^{B1} NDND1) 0.114581) 0.25952NDND1) ChIP/Input MEFFNDND1) 0.114581) 0.02483		GCACTGTT	CAGAAGCT	AAGGGAGAGT	CTCTAGCGG	TTCAACATT	CGGAGCAAT
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		GCAGAAGT	GGCCTAGA	AGATAACCTGT	GCAGCAAGA	ATATC	TCCGGTTGT
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		TTATAACC	CGTTTT	TTCCA	AG		
Taqman probe (TM assay)TCAGGTTT CATGCA CTCATGCA GCAACCAGAGGTA CAGAGGTA CAGAGGTA TTAATTGNo probe (SG Assay)CTGCCCGCT AGGGAAG (SG Assay)ACCGCAACA CAGAGCAAGG AGGGATACCGCACAC CAGAGCAAC CAGAGCAAC CAGGATCH3K4me31) 0.015311) 0.026861) 0.006301) 0.015021) 0.02083ND2) ChIP/Input MEFF2) 0.082092) 0.022772) 0.071392) 12.271142) 4.879773) Enrichment Expressed ^F / Silent ^{B1} 3) 5.35891 3) 0.84747 3) 11.32509 3) 816.83850 3) 234.18800 1) ChIP/Input MEFF1ND1) 0.476281) 0.135931) 0.022851) 0.059751) 0.040492) ChIP/Input MEFF1ND1) 0.476281) 0.135931) 0.022852) 3.566072) 13.393503) Enrichment Expressed ^F / Silent ^{B1} ND3) 2.99300 3) 54.48000 3) 109.35000 3) 59.67900 3) 330.78200 H3K9me3NDND1) 0.114581) 0.25952NDND1) ChIP/Input MEFF6NDND1) 0.114581) 0.25952NDND2) ChIP/Input MEFF6NDND1) 0.114581) 0.25952NDND3) Enrichment Silent ^{B1} / Expressed ^F NDND3) 11.82759 3) 17.49014 II		AA					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Taqman probe	TCAGGTTT	CATTTGCA	No probe	No probe	CTGCCCGCT	ACCGCAACT
GGGTTACA GCAACCCACGAGA TTTAATTG TTAGGGATAGGGATCAAGGATCH3K4me310.015311) 0.026861) 0.006301) 0.015021) 0.02083ND2) ChIP/Input MEFF2) 0.082092) 0.022772) 0.071392) 12.271142) 4.87977ND3) Enrichment Expressed ^F / Silent ^{B1} 3) 5.35891 3) 0.84747 3) 11.32509 3) 816.83850 3) 234.18800 H3K4me21) 0.11792) 1.425502) 7.405902) 2.499852) 3.566072) 13.393502) ChIP/Input MEFF2) 1.425502) 7.405902) 2.499852) 3.566072) 13.393503) Enrichment Expressed ^F / Silent ^{B1} NDND1) 0.114581) 0.25952NDND1) ChIP/Input MEFF1NDND1) 0.114581) 0.25952NDND1) ChIP/Input MEFF4 </td <td>(TM assay)</td> <td>CTCATGCA</td> <td>CAGAGGTA</td> <td>(SG Assay)</td> <td>(SG Assay)</td> <td>AGAGCAAGG</td> <td>CAGCACAAC</td>	(TM assay)	CTCATGCA	CAGAGGTA	(SG Assay)	(SG Assay)	AGAGCAAGG	CAGCACAAC
GCAACTTTAATTG TTTTTAATTG TTH3K4me31) 0.015311) 0.026861) 0.006301) 0.015021) 0.02083ND1) ChIP/Input MEFB11) 0.015311) 0.026861) 0.006301) 0.015021) 0.02083ND2) ChIP/Input MEFF2) 0.082092) 0.022772) 0.071392) 12.271142) 4.879773) Enrichment Expressed ^F / Silent ^{B1} 3) 5.35891 3) 0.84747 3) 11.32509 3) 816.83850 3) 234.18800 H3K4me23) 1 0.0476281) 0.135931) 0.022851) 0.059751) 0.040492) ChIP/Input MEFF2) 1.425502) 7.405902) 2.499852) 3.566072) 13.393503) Enrichment Expressed ^F / Silent ^{B1} NDND1) 0.114581) 0.25952NDNDH3K9me3NDND1) 0.114581) 0.25952NDNDND2) ChIP/Input MEFFNDND1) 0.114581) 0.25952NDND3) Enrichment Silent ^{B1} / Expressed ^F NDND1) 0.114581) 0.25952NDND3) Enrichment Silent ^{B1} / Expressed ^F NDND1) 0.114581) 0.25952NDND		GGGTTACA	CCACGAGA			AGGGAT	CAAGGATC
H3K4me3TTIIIIH3K4me3I) 0.01531I) 0.02686I) 0.00630I) 0.01502I) 0.02083ND2) ChIP/Input MEFF2) 0.082092) 0.022772) 0.071392) 12.271142) 4.879773) Enrichment Expressed ^F / Silent ^{B1} 3) 5.358913) 0.847473) 11.325093) 816.838503) 234.18800H3K4me2II) 0.47628I) 0.13593I) 0.02285I) 0.05975I) 0.040492) ChIP/Input MEFFNDI) 0.47628I) 0.13593I) 0.02285I) 0.05975I) 0.040492) ChIP/Input MEFF3) 2.993003) 54.480003) 109.350003) 59.66072) 13.393503) Enrichment Expressed ^F / Silent ^{B1} NDNDI) 0.11458I) 0.25952NDNDH3K9me3NDNDI) 0.11458I) 0.25952NDNDND2) ChIP/Input MEFFNDNDI) 0.11458I) 0.25952NDND2) ChIP/Input MEFFSilent ^{B1} NDNDI) 0.11458I) 0.25952NDND3) Enrichment Silent ^{B1} / Expressed ^F / Silent ^{B1} NDNDI) 0.11458I) 0.25952NDND		GCAAC	TTTAATTG				
H3K4me3 I <thi< th=""> <thi< td="" th<=""><td></td><td></td><td>TT</td><td></td><td></td><td></td><td></td></thi<></thi<>			TT				
1) ChIP/Input MEFB1 1) 0.01531 1) 0.02686 1) 0.00630 1) 0.01502 1) 0.02083 ND 2) ChIP/Input MEFF 2) 0.08209 2) 0.02277 2) 0.07139 2) 12.27114 2) 4.87977 3) Enrichment 3) 5.35891 3) 0.84747 3) 11.32509 3) 816.83850 3) 234.18800	H3K4me3						
1) ChIP/Input MEFB1 1) 0.01531 1) 0.02085 1) 0.00050 1) 0.01302 1) 0.02083 ND 2) ChIP/Input MEFF 2) 0.08209 2) 0.02277 2) 0.07139 2) 12.27114 2) 4.87977 3) Enrichment 3) 5.35891 3) 0.84747 3) 11.32509 3) 816.83850 3) 234.18800 H3K4me2 3) ChIP/Input MEFB1 ND 1) 0.47628 1) 0.13593 1) 0.02285 1) 0.05975 1) 0.04049 2) ChIP/Input MEFF 2) 1.42550 2) 7.40590 2) 2.49985 2) 3.56607 2) 13.39350 3) Enrichment 3) 2.99300 3) 54.48000 3) 109.35000 3) 59.67900 3) 330.78200 H3K9me3 ND ND 1) 0.11458 1) 0.25952 ND ND 1) ChIP/Input MEFF ND ND 1) 0.11458 1) 0.25952 ND ND 2) ChIP/Input MEFF 2) 0.00968 2) 0.01483 1) 0.1483 1) 0.25952 ND ND 3) Enrichment Silent ^{EII} / Expressed ^F 3) 11.82759 3) 17.49014 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	1) CHID/Long MEED1	1) 0 01521	1) 0.02696	1) 0.00(20	1) 0.01502	1) 0.02092	ND
2) ChIP/Input MEFF 2) 0.08209 2) 0.02277 2) 0.07139 2) 12.27114 2) 4.87977 3) Enrichment Expressed ^F /Silent ^{B1} 3) 5.35891 3) 0.84747 3) 11.32509 3) 816.83850 3) 234.18800 H3K4me2 3) 0.84747 3) 11.32509 3) 816.83850 3) 234.18800 10.04049 1) ChIP/Input MEFB1 ND 1) 0.47628 1) 0.13593 1) 0.02285 1) 0.05975 1) 0.04049 2) ChIP/Input MEFF 2) 1.42550 2) 7.40590 2) 2.49985 2) 3.56607 2) 13.39350 3) Enrichment Expressed ^F /Silent ^{B1} ND 3) 2.99300 3) 54.48000 3) 109.35000 3) 59.67900 3) 330.78200 H3K9me3 ND ND 1) 0.11458 1) 0.25952 ND ND 1) ChIP/Input MEFF ND ND 1) 0.11458 1) 0.25952 ND ND 2) ChIP/Input MEFF 2) 0.00968 2) 0.01483 2) 0.01483 10.1480 10.1480 10.1480 3) Enrichment Silent ^{B1} / Expressed ^F I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	1) ChiP/input MEFB1	1) 0.01531	1) 0.02686	1) 0.00630	1) 0.01502	1) 0.02083	ND
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2) ChIP/Input MEEE	2) 0.08209	2) 0 02277	2) 0 07139	2) 12 27114	2) 4 87977	
3) Enrichment Expressed ^F / Silent ^{B1} 3) 5.35891 3) 0.84747 3) 11.32509 3) 816.83850 3) 234.18800 H3K4me2	2) chill/input will I	2) 0.0020)	2) 0.02277	2) 0.07139	2) 12.27114	2) 4.07777	
Expressed ^F / Silent ^{B1} NM ND	3) Enrichment	3) 5.35891	3) 0.84747	3) 11.32509	3) 816.83850	3) 234.18800	
H3K4me2 ND 1) 0.47628 1) 0.13593 1) 0.02285 1) 0.05975 1) 0.04049 2) ChIP/Input MEFF 2) 1.42550 2) 7.40590 2) 2.49985 2) 3.56607 2) 13.39350 3) Enrichment Expressed ^F /Silent ^{B1} 3) 2.99300 3) 54.48000 3) 109.35000 3) 59.67900 3) 330.78200 H3K9me3 1) ChIP/Input MEFF ND ND 1) 0.11458 1) 0.25952 ND ND 2) ChIP/Input MEFF 2) 0.00968 2) 0.01483 3) 11.82759 3) 17.49014 ND	Expressed ^F / Silent ^{B1}	-,	-,	-,	-,	-,	
1) ChIP/Input MEFB1 ND 1) 0.47628 1) 0.13593 1) 0.02285 1) 0.05975 1) 0.04049 2) ChIP/Input MEFF 2) 1.42550 2) 7.40590 2) 2.49985 2) 3.56607 2) 1.3.39350 3) Enrichment Expressed ^F /Silent ^{B1} 3) 2.99300 3) 54.48000 3) 109.35000 3) 59.67900 3) 30.78200 H3K9me3 ND ND 1) 0.11458 1) 0.25952 ND ND 1) ChIP/Input MEFF ND ND 1) 0.11458 1) 0.25952 ND ND 2) ChIP/Input MEFF ND 3) 11.82759 3) 17.49014 Image: Comparison of the second se	H3K4me2						
1) ChIP/Input MEFB1 ND 1) 0.47628 1) 0.13593 1) 0.02285 1) 0.05975 1) 0.04049 2) ChIP/Input MEFF 2) 1.42550 2) 7.40590 2) 2.49985 2) 3.56607 2) 13.39350 3) Enrichment Expressed ^F /Silent ^{B1} 3) 2.99300 3) 54.48000 3) 109.35000 3) 59.67900 3) 330.78200 H3K9me3 ND ND 1) 0.11458 1) 0.25952 ND ND 1) ChIP/Input MEFF ND ND 1) 0.11458 1) 0.25952 ND ND 2) ChIP/Input MEFF 3) 11.82759 3) 17.49014 Image: Comparison of the second							
2) ChIP/Input MEFF 2) 1.42550 2) 7.40590 2) 2.49985 2) 3.56607 2) 13.39350 3) Enrichment Expressed ^F / Silent ^{B1} 3) 2.99300 3) 54.48000 3) 109.35000 3) 59.67900 3) 330.78200 H3K9me3 I) ChIP/Input MEFB1 ND ND 1) 0.11458 1) 0.25952 ND ND 2) ChIP/Input MEFF I III 0.11458 1) 0.25952 IIII 0.11483 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	1) ChIP/Input MEFB1	ND	1) 0.47628	1) 0.13593	1) 0.02285	1) 0.05975	1) 0.04049
2) ChIP/Input MEFF 2) 1.42550 2) 7.40590 2) 2.49985 2) 3.56607 2) 13.39350 3) Enrichment 3) 2.99300 3) 54.48000 3) 109.35000 3) 59.67900 3) 330.78200 H3K9me3 1) ChIP/Input MEFB1 ND ND 1) 0.11458 1) 0.25952 ND ND 2) ChIP/Input MEFF 2) 0.00968 2) 0.01483 3) 17.49014 ND ND							
3) Enrichment Expressed ^F / Silent ^{B1} 3) 2.99300 3) 54.48000 3) 109.35000 3) 59.67900 3) 330.78200 H3K9me3 ND ND 1) 0.11458 1) 0.25952 ND ND 1) ChIP/Input MEFB1 ND ND 1) 0.11458 1) 0.25952 ND ND 2) ChIP/Input MEFF 2) 0.00968 2) 0.01483 2) 0.01483 10 11.82759 3) 17.49014	2) ChIP/Input MEFF		2) 1.42550	2) 7.40590	2) 2.49985	2) 3.56607	2) 13.39350
3) Enrichment 3) 2.99300 3) 54.48000 3) 109.35000 3) 59.67900 3) 330.78200 H3K9me3 I) ChIP/Input MEFB1 ND ND 1) 0.11458 1) 0.25952 ND ND 2) ChIP/Input MEFF 2) 0.00968 2) 0.01483 3) 17.49014 Image: Constant of the second sec			0) 0 00000	2) 54 49999	2) 100 25000	2) 50 (5000	2) 220 50200
Expressed / Stent ND ND 1) 0.11458 1) 0.25952 ND ND 1) ChIP/Input MEFB1 ND ND 1) 0.11458 1) 0.25952 ND ND 2) ChIP/Input MEFF 2) 0.00968 2) 0.01483 2) 0.01483 3) 11.82759 3) 17.49014	3) Enrichment		3) 2.99300	5) 54.48000	3) 109.35000	3) 59.67900	3) 330.78200
H3K9Ille3 ND ND 1) 0.11458 1) 0.25952 ND ND 1) ChIP/Input MEFB 1 ND ND 1) 0.11458 1) 0.25952 ND ND 2) ChIP/Input MEFF 2) 0.00968 2) 0.01483 2) 0.01483 1000000000000000000000000000000000000	Lizkowa2						
1) ChIP/Input MEFB1 ND ND 1) 0.11458 1) 0.25952 ND ND 2) ChIP/Input MEFF 2) 0.00968 2) 0.01483 2) 0.01483 2) 0.01483 2) 0.01483 3) Enrichment Silent ^{B1} / Expressed ^F 3) 11.82759 3) 17.49014 2) 0.01483 2) 0.01483	Накушез						
2) ChIP/Input MEFF 2) 0.00968 2) 0.01483 3) Enrichment Silent ^{B1} / Expressed ^F 3) 11.82759 3) 17.49014	1) ChIP/Input MEEB1	ND	ND	1) 0 11458	1) 0 25952	ND	ND
2) ChIP/Input MEFF 2) 0.00968 2) 0.01483 3) Enrichment Silent ^{B1} / Expressed ^F 3) 11.82759 3) 17.49014	1) Chil/Input MELDI			1) 0.11450	1,0.23752		110
3) Enrichment Silent ^{B1} / Expressed ^F 3) 11.82759 3) 17.49014	2) ChIP/Input MEFF			2) 0.00968	2) 0.01483		
3) Enrichment Silent ^{B1} / Expressed ^F 3) 11.82759 3) 17.49014	_,, mput time t			_, 5100700	_, 0.01.00		
Silent ^{B1} / Expressed ^F	3) Enrichment			3) 11.82759	3) 17.49014		
	Silent ^{B1} / Expressed ^F			*	*		

Table S1. Quantitative Real-Time Assays For ChIP-PCR Validation

Taqman probes and primers were designed by PrimerExpress and qPCR performed with the ABI PRISM 7000 using primers (900nM) and Taqman probe (200nM) under the following cycling conditions: $2 \min 50^{\circ}$ C, $10 \min 95^{\circ}$ C, 40 cycles of $15 \text{ s} 95^{\circ}$ C and $1 \min 60^{\circ}$ C. Quantification of Input and ChIP DNA amounts: DNA was extracted from MNase digested chromatin, equal amounts of MEFB1 and MEFF genomic DNAs were mixed and standard curves prepared for each real-time primer set. Relative quantification of Input and ChIP at different regions around *Air* promoter and statistics were performed as described in the manufacturer's protocol (Applied Biosystems). ChIP/Input ratio and the fold enrichment were calculated (expressed/silent or silent/expressed, B1=MEFF). *Note that the *Air*-Start SG assay overlaps the position of the *Air*-126 Taqman assay, yet produced 2–3 fold higher signals. The explanation for this difference is not clear since the SYBR green melting curves for this assay identified only one peak. TM Assay; Taqman Probe QPCR, SB Assay; SYBR GREEN QPCR.

DHS	DHS present in	Single copy or Repetitive	ECR	Promoter expression in	Active histone	modifications		Repressive
site	MEFs	DHS	non-Ler	MEFs	H3K4me3	H3K4me2	Н3К9Ас	modifications
I***	+	S/R	nd	Slc22a1-silent	- (P)	- (P)	- (P)	
					- (M)	- (M)	- (M)	
II	-	S	-		- (P)	- (P)	- (P)	
					- (M)	- (M)	- (M)	Tested:
III	+	R	-		- (P)	- (P)	- (P)	H3K9me1,2,3
					- (M)	- (M)	- (M)	H4K20me1,2,3
IV	+	S/R	-		- (P)	- (P)	- (P)	H3K2/me1,2,3
					- (M)	- (M)	- (M)	4
V	+	S	(+)		- (P)	- (P)	- (P)	ann anal abaan an af
		-			- (M)	- (M)	- (M)	general absence of
VI	+	S	+		- (P)	+ (P)	$+(\mathbf{P})$	modifications
		~			- (M)	+ (M)	+ (M)	with the exception
VII	+	S	+		$+(\mathbf{P})$	+ (P)	$+(\mathbf{P})$	of H3K27me1 and
		_			- (M)	+ (M)	+ (M)	H4K20me1
VIII	+	R	(+)		- (P)	+ (P)	$+(\mathbf{P})$	114K20IIIC1
		~			- (M)	- (M)	- (M)	4
IX**	+ (P)	S	-	Air	+ (P)	+ (P)	+(P)	
				Pat-exp	- (M)	- (M)	- (M)	4
X	+	S/R	-	_	- (P)	+ (P)	- (P)	
XI	+	R	-		- (M)	+ (M)	+ (M)	4
XII*	+(M)	S	+	Igf2r	- (P)	- (P)	- (P)	
				Mat-exp	+(M)	+ (M)	+(M)	4
XIII	+	S/R	(+)	_	- (P)	+ (P)	- (P)	
XIV	+	R	-		- (M)	+ (M)	- (M)	4
XV	+	S/R	-		- (P)	+ (P)	- (P)	
					- (M)	- (M)	+ (M)	4
XVI	+	S	+		- (P)	+ (P)	- (P)	
					- (M)	- (M)	+ (M)	4
XVII	-	S/R	-		- (P)	- (P)	- (P)	
					- (M)	- (M)	- (M)	4
XVIII	+	S/R	-		- (P)	- (P)	- (P)	
L					- (M)	- (M)	- (M)	4
XIX	+	R	(+)		- (P)	- (P)	- (P)	
L					- (M)	- (M)	- (M)	4
XX	+	S/R	(+)		- (P)	- (P)	- (P)	
					- (M)	- (M)	- (M)	4
XXI	-	S/R	-		- (P)	- (P)	- (P)	
					- (M)	- (M)	- (M)	

Table S2. Distribution Of Histone Modifications On DNaseI Hypersensitivity Sites

****Slc22a1* promoter not expressed in MEF cells, ** *Air* promoter paternally expressed, **Igf2r* promoter maternally expressed. Note that only DHS IX and XII that map to the transcription start respectively of *Air* and *Igf2r*, show parental-specificity in MEF cells while the remaining DHS are present on both parental chromosomes. DHS sites not present in MEF cells were identified in mouse organs or ES cells (Pauler et al., 2005). + or -; positive or negative signal in 2 ChIP-Chip biological replicates (Fig.3, Sup.Fig.4). Signals on DHS VII-XII were also verified by PCR (Sup.Tab.1). M; maternal chromosome, P; paternal chromosome, ECR; evolutionary conserved sequence. Histone modifications linked to X+XI (spanning 13 kb) and to XIV-XV (spanning 5.2 kb) appeared between these two pairs of neighboring DHS. Bold type; DHS showing specific histone modifications. ECRs, (+) indicates an ECR within 2kb of the DHS.

	Air promoter HC peak	<i>Igf2r</i> promoter HC peak	Au76-psg HC peak
H3K9me3	Maternal +++	Paternal ++	Paternal +++
HP1 α, β, γ	Maternal ++ (α, β, γ)	Paternal + (β) , +/- (γ)	-
H4K20me3	Maternal +++	Paternal ++	Paternal +++
ESET/SETDB1	Maternal ++	Paternal +	Not detected
SUV39H null cells	Increased H3K9me3, HP1β and H4K20me3 signals	Increased H3K9me3, HP1β and H4K20me3 signals	No or minimal increased H3K9me3 and H4K20me3 signals
SUV4-20H null cells	Unchanged H3K9me3	not done	Unchanged H3K9me3
AirT allele	Present	Absent	Absent
Type of element	CpG island promoter 1.4kb	CpG island promoter 1.1kb	Pseudogene 2.3kb Host gene: chr.15 Rangap1
Expression in MEF cells	Paternally expressed	Maternally expressed	Not expressed
DNA methylation	Maternal (high density) (98 CpGs in 1.4kb)	Paternal (high density) (116 CpGs in 1.1kb kb)	Bi-parental (low density) (31 CpGs in 2.3 kb)
Silencing mechanism	DNA methylation	Air ncRNA expression	Promoter-less pseudogene
Transcription overlap	Overlapped by <i>Igf2r</i> mRNA	Overlapped by Air ncRNA	Overlapped by Air ncRNA

Table S3. Characteristics of Heterochromatin peaks in the Igf2r imprinted gene cluster

Table S4. Antibodies Used For Chromatin Immunoprecipitation

	Antibody	Source	Catalogue number	Lot numbers
1	H3K4me2	Upstate	07-030	24727
2	H3K4me3	Upstate	07-473	24503
3	H3K9Ac	Upstate	06-942	23997
4	H3Ac (K9+K14 Ac)	Upstate	06-599	25233
5	H4Ac (5,8,12,16 Ac)	Upstate	06-866	26393
6	H3K9me1	T. Jenuwein*	4858	6 th bleed
7	H3K9me2	T. Jenuwein*	4677	6 th bleed
8	H3K9me3	T. Jenuwein*	4861	6 th bleed
9	H4K20me1	T. Jenuwein*	0077	3 rd bleed
10	H4K20me2	T. Jenuwein*	0080	5 th bleed
11	H4K20me3	T. Jenuwein*	0083	5 th bleed
12	H3K27me1	T. Jenuwein*	8835	5 th bleed
13	H3K27me2	T. Jenuwein*	8841	5 th bleed
14	H3K27me3	T. Jenuwein*	6523	5 th bleed
15	HP1α (clone 15.19s2)	Upstate	05-689	24257
16	HP1	Abcam	ab10478	57611
17	HP1γ (clone 42s2)	Upstate	05-690	24258
18	ESET	Upstate	07-378	24234, 31525.
19	**Anti-chicken IgG	Sigma	C2288	084K4752
20	***G9a /Eu-HMTase 2 (clone A8620A)	Perseus Proteomics	PP-A8620A-00	A1
21	G9a	Abcam	ab40542	248273
22	****SUV39H1	Abcam	ab12405	241399
* spec	ficity described in Perez-Burgos et al., 2004.	Methods Enzymol, 376, 2	234-254	

*specificity described in Perez-Burgos et al., 2004, Methods Enzymol. 3/6, 234-254
 **Mock antibody control included in all ChIP experiments and no fragments were amplified from this material
 ***Tested for IP in Tachibana et al., 2005, Genes Dev.19:815
 ****This antibody failed to ChIP pericentric chromatin (data not shown)

Table S5. Primer Pairs Used For ChIP-PCR

Air Promotor	Forward Sequence	Reverse Sequence
Air Promoter	AGTGGGTGGTAGGAATAGGG	GCCTCTGAGCAGTTTCCTG
2	GGGTGAAGGAAGTGTCTCAC	CCCACTCTCCAACTTAAAGC
3	CATGAAGGACTGACAGAACTAACC	TTACACCTGATCCTACTGTCCTG
4	AGTCAGGGTGTGGATTCTGC	GCAGAGAACGAATCATCCAAG
5	GGCTTGCCTAGTGCTTATCTG	TGCTCTGCAACATGACCTC
6	TCACCCTAGCGCTGAATCTC	TCCAGGACTGTAAGGCCATC
7*	CCCTGATCACAGAACCCTTC	AGGGTGAAAAGCTGCACAAG
Primer pair 7 spans dir	rect repeats in the middle of the Air CpG island and cons	sistently produced two bands. The sequence of both fragments
showed they arose from	n the correct DNA fragment (data not shown)	
8	CAGAGGAGGTGGGAACAATG	GCATTTCGAGTGGATTCAGG
9	GGCCTGAGAGCCATTTAAACTTAG	CCTGAGATCCAAATAGGGTGTG
10	ACAGATGCTCCGCTTCCAG	GICIGAGGGCIGCCAAATAAC
10	AAGCACCACAGIICAIGCIG	
12 Igf?r Promoter	AAGAGCIGAAGGCAGCCATA	IGAAGICIAAAGICACGOCACA
13	TTTGACTTTTGACCCCTTGG	TCAGCAACAGAGAGGGAAGG
14	CTTCTGAGCTTGGCACAC	AGGCAGCTCTGCTTCTG
15	GAAGAGGCCAGGTAATGCAG	GTACACAAACGGAGGTGATCC
16	AGGCAGCTCCTTATGTGGTC	ACCGTGCTGTTCCAGTAACC
17	CACTTGTGCATGGTCATCTC	AACAGCTGCCTAGCTTGC
18	AGCCATTTGTCAGTGGTTGAAG	TCAGCCCCGTCTCATTCTG
19	TCCACCAGTCACCTAACTTGC	CCGGGTCACATGAGCATC
20	GTGCTCCATTTCCAAAGC	GGAGTTCATGTTTGTCCTCTC
21	AAAGCACAACATACCCATACAG	CGGGTGCCATAGATTAACCA
22	CTCTAGGGCAGTGTCTCACG	TGCTATGACTTATATTGGCATCC
23	TCATTTATCTCTGAAGGCAAGG	GAATTACTTAGTGACCTCCCTTCC
24	AGAAGGGGCAACAGATGAAC	GAAGGCGATTGAAAGTCACAG
Slc22a2 Promoter		
25	AAGGAAAGTGTGGGATGGAG	TGGCAGTGTGAAGGAAGC
26	TCCGAGGTCTTCTGCTCCTG	TCCAGCTTGGCCTTATATGCAG
27	TGAGGAACCCGATAGAAGATTG	GTCAAGGAGAGCATCTTGTGC
28	AAGACTCTGAACCCACTCAATG	TCTACCAGCTCAGTCCAACG
29	TGGGTGAAGAGGAAGGACAC	AGCGGCATTACAAACAATCC
30	TGCCTTCAGCAGCATTTG	GGTTCCAGTCCACCTCATACC
31		
32		CTCTCCCCTCTCTTTCCATTC
34		
35	GCTCTGTATAGATGGCCGTTAG	TGTTAGGGAGGCTTGAGAAAG
36	GCCCACAAGAACACACTGAC	CTCAAGGAGGAGGGAAACTG
Slc22a3 Promoter		
37	ATGCAGGATTTCTCCTCACC	GGTCTTCCCACCTAGACTGC
38	ACTCTGATTGGCTGCAACTG	CGATGCCCAGAACCTATCTC
39	TGACCATATCCCTTAAGACAGC	GGTCTAGTGAGCCCAAATCC
40	GTTCTCTCAACCTGTGATTCC	TTAAAGGGCAGATGTGGTG
41	CATGGTCAGCCTTAGTTCTGTG	CCGACTCAATGTCTGCACTC
42	ACCATCGTCAGCCAGGTAAG	TGGACACTGGAAAGAAGTTGC
43	GGTGCAGGTGCAGGTATGAA	TCCTCAGTGCCTGGTCGAA
44	ACATCACAAGCAGCCCAAAC	TCAGTGGCATTCCAGTACCC
45	CACATCATGGTCCACAGAGC	TGCTCCATTTCACAGTCAGG
46	CCIGGGCIGAACICCAAAG	
4/	AAAGCAAIGCAGAIGAGCAG	
48	ACICCAGGAACIGGIAIIGCIC	CCICACAOGIGIICCACAAIC
Au/o-psg	TCTATAGGTCTGTTGTGGTGGAAC	AAGCCTGGTCAGCACTCTTC
50	AGCTCCAGGTGGGCACATTC	CCTCAAACAGTCTGTCCCTGTCAG
50	TGCAGGTCACATGAAGAAGG	ACGAGCAGGCTACCGAAAG
52	TCCCATTCCCTAACAGACCA	TAGAAGTTGCGGCTTGCATT
53	CTGATGCAGGGAGAGGTTATAC	ACGTCCTTTGTTAGGAGCAG
54	GAACCTGGTGTCAGGAGAGC	GGCAACAAGCAATACAAGTCC
55	CATCCAGCTTGGCCTTAGAG	CGGAAACCACCTTAGAAATGC
56	GAAGCAGGCATACCTTAGTATGAG	GACACAGGCAAACAACCCTAC
57	CAGCTGTATGCAAGCTCCAC	TGTTCAGGCACACACATACAAG
58	CAGGAAGTACATGCCCACAG	AAGGTGGCATCTGTGTTTCC
59	AGTCGGAGCTGAAGTGATGC	CCACCTCACCCTTCTCAATG
60	GCTGAATGAGCCTCTGAAAG	GGCCCAGATGCTGTTTTAC
(1)	GCAGCCATAAAGAGAAAAGG	GTATGCCTGGCCTCAACAG
61		
61 Pericentric region – ma	jor satellites	

Supplemental References

Lin, S.P., Youngson, N., Takada, S., Seitz, H., Reik, W., Paulsen, M., Cavaille, J., and Ferguson-Smith, A.C. (2003). Asymmetric regulation of imprinting on the maternal and paternal chromosomes at the Dlk1-Gtl2 imprinted cluster on mouse chromosome 12. Nat. Genet. 35, 97–102.

Pauler, F.M., Stricker, S.H., Warczok, K.E., and Barlow, D.P. (2005). Long-range DNase I hypersensitivity mapping reveals the imprinted Igf2r and Air promoters share cis-regulatory elements. Genome Res. 15, 1379–1387.

Schotta, G., Lachner, M., Sarma, K., Ebert, A., Sengupta, R., Reuter, G., Reinberg, D., and Jenuwein, T. (2004). A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin. Genes Dev. 18, 1251–1262.

Wutz, A., Theussl, H.C., Dausman, J., Jaenisch, R., Barlow, D.P., and Wagner, E.F. (2001). Nonimprinted Igf2r expression decreases growth and rescues the Tme mutation in mice. Development 128, 1881–1887.

Zwart, R., Sleutels, F., Wutz, A., Schinkel, A.H., and Barlow, D.P. (2001). Bidirectional action of the Igf2r imprint control element on upstream and downstream imprinted genes. Genes Dev. 15, 2361–2366.